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Abstract We correlate the vertical component of ambient seismic noise data re-
corded on 56 broadband stations with dense coverage in the greater Los Angeles area
to determine station-to-station Green’s functions. These Green’s functions provide an
important test of community velocity models (Southern California Earthquake Cen-
ter [SCEC] CVM 4.0 and CVM-H 5.2) used for strong ground-motion prediction for
future scenario earthquakes in southern California. Comparisons of the ambient-noise
Green’s functions for nearly 300 paths, with those calculated by the finite-element
method in the community velocity models, reveal a strong waveform similarity for
the dominant surface waves between 0.1 and 0.2 Hz. We find a mean correlation coef-
ficient between the ambient-noise and finite-element Green’s functions of 0.62 for the
CVM 4.0 and 0.49 for the CVM-H 5.2, indicating stronger waveform similarity for
CVM 4.0. We also find that for 77% of the paths, the surface waves in the finite-
element Green’s functions for CVM 4.0 arrive early, suggesting that the CVM 4.0
has velocities in the upper 10 km that are too fast along these paths. The same bias
is evident for CVM-H 5.2, but is substantially smaller, with only 61% of the paths too
fast. For 67% of the paths, CVM 4.0 has velocities faster than CVM-H 5.2. The time
lags we obtain between the ambient-noise and finite-element Green’s functions pro-
vide key information for improving future community velocity models.

Introduction

Seismologists have long recognized that diffuse seismic
wave fields, such as the seismic coda and ambient seismic
noise, contain useful information about the medium through
which they propagate (Aki, 1957; Claerbout, 1968; Aki and
Chouet, 1975). The waveforms of the diffuse seismic wave
field are, however, difficult to interpret due to both the
random distribution of noise sources and scattering from
small-scale heterogeneities. Early studies focused on the in-
terpretation of wave intensities (e.g., Sato and Fehler, 1998)
while the phase information received less attention (Cam-
pillo, 2006).

Wave arrivals between two receivers in a diffuse field,
despite their apparent random nature, have a weak coherence
that survives multiple scattering. Lobkis and Weaver (2001)
and Weaver and Lobkis (2001) showed that correlation of
diffuse wave fields recorded at two receivers yields the re-
sponse of the material recorded at one receiver if there were
an impulse excitation at the other receiver (i.e., the Green’s
function). Early application of correlating diffuse wave fields
can be found in helioseismology (Duvall et al., 1993; Rickett
and Claerbout, 1999). This concept has also been applied in

seismology (e.g., Campillo and Paul, 2003; Shapiro and
Campillo, 2004; Paul et al., 2005; Sabra et al., 2005a,b; Sha-
piro et al., 2005), ultrasonics (e.g., Larose et al., 2004; Mal-
colm et al., 2004), and ocean acoustics (e.g., Roux et al.,
2004; Sabra et al., 2005). It can be extended to other linear
systems as well (Snieder et al., 2007).

Theoretical proof of the principle of extracting Green’s
function by correlating diffuse wave fields has been de-
rived from normal mode theory (Lobkis and Weaver,
2001; Weaver and Lobkis, 2001, 2004), the representation
theorem (Wapenaar, 2004), a stationary phase approximation
(Snieder, 2004), and plane-wave superposition (Sánchez-
Sesma and Campillo, 2006; Sánchez-Sesma et al., 2006).
Most derivations assume an isotropic distribution of uncor-
related noise sources and/or scatterers for the true Green’s
function to be retrieved, a situation that may not be satisfied.

In seismology, Campillo and Paul (2003) and Paul et al.
(2005) demonstrated that summing correlations of seismic
coda over many earthquake sources reveals station-to-station
Green’s functions. Correlation of ambient seismic noise over
long times can also yield station-to-station Green’s functions
(Shapiro and Campillo, 2004; Sabra et al., 2005a,b; Shapiro
et al., 2005). The method works because ambient-noise
sources (whether actual sources) or secondary sources (due
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to scattering) randomize the wave field over long time peri-
ods. The ambient-noise approach exploits the coverage of
dense seismic networks without using active sources or wait-
ing for earthquakes to occur. A number of recent studies have
used the results from ambient seismic noise correlation to
constrain the seismic velocity structure of the Earth (e.g.,
Sabra et al., 2005a,b; Shapiro et al., 2005; Gerstoft et al.,
2006; Yao et al., 2006, 2008; Brenguier et al., 2007; Cho
et al., 2007; Lin et al., 2007, 2008; Moschetti et al.,
2007; Yang et al., 2007, 2008; Benson et al., 2008; Liang
et al., 2008; Zheng et al., 2008) and the Moon (Larose et al.,
2005). The ambient seismic noise has also been applied in
detecting coseismic velocity changes in the crust (Wegler and
Sens-Schönfelder, 2007) and predicting volcanic eruptions
(Brenguier et al., 2008) and earthquake ground motions
(Prieto and Beroza, 2008).

In this article, we correlate monthly vertical velocity
data recorded in January 2007 on 56 broadband seismic
stations in southern California with dense coverage of the
greater Los Angeles area (Fig. 1) to obtain station-to-station
Green’s functions that are shown to be stable over the whole
year. Using these station-to-station Green’s functions, we test
two community velocity models developed for southern Cal-
ifornia (Magistrale et al., 2000; Kohler et al., 2003; Süss and
Shaw, 2003) by the Southern California Earthquake Center
(SCEC). These velocity models play a central role in large-
scale strong ground-motion simulations (e.g., Olsen, et al.,
1995; Graves, 1998; Komatitsch et al., 2004; Olsen et al.,
2006; Ma et al., 2007). Current versions of the two models
are the SCEC CVM 4.0 and CVM-H 5.2 (Fig. 2).

Ambient-noise Green’s functions provide an indepen-
dent and important evaluation of both community velocity

Figure 1. Distribution of the 56 broadband seismic stations (triangles) in southern California used in this study. The six stations in yellow
(ADO, ALP, MOP, RPV, SDD, and RVR) are where we correlate data with all the other stations, resulting in ambient-noise Green’s functions
for 315 ray paths with a good coverage across the Los Angles basin. The white rectangle shows the area we include in the finite-element
simulations. Major faults and roads in the area are depicted in black and green lines, respectively.
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models with a coverage that is more complete than that pro-
vided by local earthquakes. We test the current community
velocity models (CVM 4.0 and CVM-H 5.2) by comparing the
ambient-noise Green’s functions with theoretical Green’s

functions calculated by the finite-element method of Ma
and Liu (2006). We compute theoretical Green’s functions
at all 56 stations by applying a vertical force at six stations
(ADO, ALP, MOP, RPV, SDD, and RVR) (Fig. 1). This gives

Figure 2. (a) Depth-averaged shear-wave velocity from surface to 3 km below the zero elevation for the CVM 4.0 and CVM-H 5.2 in the
area outlined by the white rectangle in Figure 1. The thick white line depicts the coastline. Green contours show surface topography. The
CVM-H 5.2 includes the offshore basin structures, while the CVM 4.0 does not. The CVM-H 5.2 has no data coverage in the dark red area on
the upper left corner of the right panel. (b) The cross section of the S-wave velocity in the CVM 4.0 and CVM-H 5.2 along the dashed line in (a).
The CVM-H 5.2 has a finer resolution at shallow depths, especially at the basins. However, the resolution is poorer at large depths. In the
regions where the CVM-H 5.2 has no coverage, we use the material properties retrieved from the CVM 4.0 in the finite-element simulations.
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rise to 315 ray paths with good azimuthal coverage across the
basins in Los Angeles. Comparisons of the Green’s functions
along most ray paths show strong waveform similarity for
the dominant surface waves in the microseism band (0.1–
0.2 Hz), confirming the validity of extracting the Green’s
function from ambient seismic noise and demonstrating a
reasonably good representation of the velocity structure in
both community models. We find that CVM 4.0 generates
Green’s functions that correlate better with the ambient-noise
Green’s functions than CVM-H 5.2. Accurate time lags be-
tween theoretical and observed Green’s functions are iden-
tified for each ray path, suggesting that both community
velocity models have bias. We find surface-wave velocities
that are too fast along 77% of the paths for CVM 4.0 and 61%
of the paths for CVM-H 5.2.

In the following, we first show the steps for obtaining
the Green’s functions from ambient-noise correlation. We
show that the correlation itself corresponds to the velocity
station-to-station Green’s function in 3D if the correlation
is dominated by narrowband signals. We then describe the
finite-element calculation of theoretical Green’s functions
in CVM 4.0 and CVM-H 5.2. Finally, we compare the Green’s
functions obtained from the two distinct approaches and
evaluate the two community velocity models.

Retrieval of Green’s Functions from
Ambient Seismic Noise

The 3D displacement Green’s function between two re-
ceivers is related to the negative time derivative of cross cor-
relation (e.g., Lobkis and Weaver, 2001; Weaver and Lobkis,
2001; Snieder, 2004; Roux et al., 2005, Sabra et al., 2005a,b;
Gerstoft et al., 2006; Sánchez-Sesma and Campillo, 2006).
The relationship can be written as

� d

dt
〈Cdisp

ij �r1; r2; t�〉≈ Gdisp
ij �r1; r2; t� �Gdisp

ij �r1; r2;�t�;
(1)

where the Green’s function Gdisp
ij �r1; r2; t� relates a unit force

in direction i at receiver r1 to the displacement response in
direction j at receiver r2; 〈〉 denotes the ensemble average—
usually taken over a long time span. The correlation
Cdisp
ij �r1; r2; t� is defined as

Cdisp
ij �r1; r2; t� �

Z
T

0

ui�r1; τ�uj�r2; t� τ� dτ ; (2)

where u is the displacement and T is the temporal length of
observations. By taking the time derivative of equation (1), it
can be shown that the velocity Green’s function relates to the
correlation as

� d2

dt2
〈Cdisp

ij �r1; r2; t�〉≈Gvel
ij �r1; r2; t� �Gvel

ij �r1; r2;�t�:
(3)

If the cross correlation 〈Cdisp
ij �r1; r2; t�〉 is dominated by

a narrowband signal, the property � d2

dt2
〈Cdisp

ij �r1; r2; t�〉≈
〈Cdisp

ij �r1; r2; t�〉 yields

〈Cdisp
ij �r1; r2; t�〉≈Gvel

ij �r1; r2; t� �Gvel
ij �r1; r2;�t�: (4)

This indicates that the correlation of displacement records
at two stations gives rise to the station-to-station velocity
Green’s function. It can be shown that if the correlation is
dominated by narrowband signals, the correlation of dis-
placement, velocity, or acceleration gives nearly identical
results. Thus we obtain

〈Cvel
ij �r1; r2; t�〉≈ Gvel

ij �r1; r2; t� �Gvel
ij �r1; r2;�t�; (5)

which indicates that the correlation of velocity records gives
the velocity Green’s function. This is consistent with the re-
sult of Malcolm et al. (2004) and Wapenaar (2004). In a 2D
space, the cross correlation itself corresponds to the dis-
placement Green’s function (Derode et al., 2003; Sánchez-
Sesma and Campillo, 2006; Sánchez-Sesma et al., 2006).

In this article, we use equation (5) and correlate velocity
records to obtain the station-to-station velocity Green’s
functions. We selected 56 broadband seismic stations (Fig. 1)
in the Southern California Seismic Network (SCSN) that
recorded continuous data in January 2007 (see the Data
and Resources section). The monthly data (40 samples=sec)
are divided into 372 2 hr segments. We chose the 2 hr seg-
ment because it is long enough for the coherent signals to
propagate between each station pair we study. We removed
the mean and trend, and we band-pass filtered each 2 hr
segment between 0.01 and 5 Hz before calculating the cross
correlation.

Figure 3a details the steps to obtain the Green’s function
between stations FMP and ADO by cross correlating 2 hr
long vertical velocity records. The procedure follows closely
that of Benson et al. (2007). To remove the effects of earth-
quakes and local noise sources, we apply sign-bit normaliza-
tion to the signals. We then apply spectral normalization by
whitening the spectra to broaden the frequency range before
cross correlation. Clear coherent signals, the desired station-
to-station Green’s function, show up in the one-month
stacks; however, the signal violates the temporal symmetry
expected from equation (5). This is because the predominant
noise source is from the ocean (closer to FMP than ADO),
causing greater coherence for positive time lags. For this rea-
son, we adopt the side of the larger amplitude correlation as
the ambient-noise Green’s functions. The station-to-station
Green’s function has dominant energy in a narrow frequency
band between 0.1 and 0.2 Hz (Fig. 3a).

Because the noise sources (such as ocean storms) are
likely to change with time during a year, we also test the ro-
bustness of the Green’s function by comparing the correla-
tion of monthly data for four different months and of yearly
data (Fig. 3b). For the station pair ADO and FMP, the
Green’s function for each month shows zero time lag with
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the Green’s function by correlating yearly data, though the
1 yr correlation has a larger signal-to-noise ratio (SNR) in the
negative time lags. This illustrates that the correlation of
monthly data gives rise to the stable Green’s function over
the whole year, and it is insensitive to the noise sources. This

is the case for all of the station pairs we test with different
orientations with respect to the coast.

To demonstrate the technique, we extract all three com-
ponents of the ambient-noise Green’s function at station
FMP by correlating the vertical velocity of station ADO with
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Figure 3. (a) Steps to obtain Green’s function between a station pair ADO and FMP from ambient-noise correlation. We calculate cross
correlation for 2 hr long velocity time series and stack one month of correlations (372 stacks) to retrieve the station-to-station velocity Green’s
function. The amplitude spectrum of the Green’s function shows that the dominant energy band is between 0.1 and 0.2 Hz. (b) Comparison of
Green’s function by correlating monthly (blue) and yearly (red) data for the station pair ADO and FMP for four different months in 2007. The
time lag and correlation between the two Green’s functions are denoted on each panel, showing that the Green’s function by correlating
monthly data is stable over the whole year.
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all three components of velocity at station FMP. The Green’s
functions correspond to the responses at station FMP due to a
vertical unit force at ADO. Figure 4 shows the comparison of
all three components at station FMP based on ambient-noise
Green’s functions and the theoretical finite-element Green’s
functions calculated using the method of Ma and Liu (2006)
by applying a smooth vertical force with Gaussian time de-
pendence [f�t� � e�0:5�t�t0�

2

and t0 � 5 sec] at station ADO
in the two community velocity models. The ambient-noise
seismograms are obtained by convolving the ambient-noise
Green’s functions with the force f�t�. Because the ambient-
noise Green’s functions contain dominant energy between
0.1 and 0.2 Hz, we band-pass filtered all of the seismograms
in this narrow frequency band. We normalize the amplitude

of ambient-noise Green’s functions by a common factor such
that the vertical response has a unit peak amplitude and
the relative amplitudes among the three components are
preserved.

The waveforms show remarkable similarity, especially
in the north–south and vertical components, indicating the
validity of extracting Green’s functions from ambient seis-
mic noise and that both CVM 4.0 and CVM-H 5.2 provide
a good representation of the velocity structure along this
path. The amplitude mismatch in the east–west component,
however, suggests that there is room for improvement.
Strong waveform similarity allows an accurate time lag to
be retrieved between the ambient-noise and finite-element
Green’s functions. For example, the finite-element seismo-
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Figure 4. Comparison of the three-component seismograms based on the ambient-noise correlation (gray solid line) and the finite-
element seismograms (black dashed line) at station FMP due to a vertical Gaussian force at station ADO. The finite-element seismograms
are computed in the CVM 4.0 (left column) and CVM-H 5.2 (right column). All of the seismograms are band-pass filtered between 0.1 and
0.2 Hz. All of the three components are normalized by a common factor such that the vertical component has the unit amplitude. The time lag
of the finite-element waveform relative to the noise waveform (positive being that the ambient-noise waveform arrives earlier) and the
normalized correlation coefficient between the two waveforms are denoted on each panel.
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gram (vertical component) in CVM 4.0 arrives 0.10 sec faster
than the ambient-noise seismogram, whereas it is 0.21 sec
slower in CVM-H 5.2. Different time lags between the
CVM 4.0 and CVM-H 5.2 can also be seen on the other two
components. Across the three components in each velocity
model, we see a different time lag as well. For example, in
the CVM-H 5.2, the time lag for the vertical component is
0.21 sec, whereas it is 0.40 sec for the east–west component
and 0.14 sec for the north–south component. This suggests
some small anisotropy in the velocity structure. In the follow-
ing, however, we will test the community velocity models
by focusing only on the vertical-to-vertical correlations and
leave the correlations with the horizontal components for fu-
ture work.

We cross correlate the velocities at all 56 stations with
the velocity at stations ADO, ALP, MOP, RPV, SDD, and
RVR, respectively (Fig. 1). This gives rise to 315 station-
to-station Green’s functions with good azimuthal coverage
in the Los Angeles area, which strongly constrains the veloc-
ity structure. Ambient-noise Green’s functions show coher-
ent wave propagation, which is dominated by surface waves
(Fig. 5). Large variations in the waveforms of Green’s func-
tions can be seen along different paths, which is a direct in-
dication of the complex velocity structure of the region.

Calculation of Theoretical Green’s Functions in the
Community Velocity Models

CVM 4.0 (Magistrale et al., 2000; Kohler et al., 2003) is
a 3D rule-based velocity description, where compressional
wave velocity (VP) is defined as a function of sediment
age and depth. Several significant stratigraphic horizons
are defined, and the velocity within a stratigraphic interval

is obtained by vertical interpolation. CVM-H 5.2 (after Süss
and Shaw, 2003) is a VP model based on tens of thousands of
direct velocity measurements taken from well logs, seismic
reflection data, and geostatistical interpolation techniques
that take into account the lateral and vertical variations of
lithology in the basin. It has a high-resolution model in
the Los Angeles basin and a low-resolution model outside
of the basin. In both models, shear-wave velocity and density
values are defined based on empirical relationships with VP.
Both community velocity models use the tomography model
of Hauksson (2000) for regional velocities. The two models
differ substantially in their formulation and in their represen-
tations of crustal velocity structure in southern Califor-
nia (Fig. 2).

To calculate the theoretical Green’s functions, we use
a versatile finite-element method (Ma and Liu, 2006) with
eight-node hexahedral elements, one-point integration, and
hourglass controls. It has been validated in propagating
elastic seismic waves in domains of simple geometry (Ma
and Liu, 2006) as well as in the presence of surface topog-
raphy (Ma et al., 2007). It allows easy incorporation of a
perfectly matched layer (PML) absorbing boundary and an
efficient way of accounting for seismic attenuation (Ma
and Liu, 2006).

In the finite-element method, we calculate the station-
to-station Green’s function as the response to a vertical
force applied at the Earth’s surface, that is, Lamb’s problem
(Lamb, 1904). Figure 6 shows the comparison of the finite-
element solution with the analytical solution obtained by the
Cagniard de Hoop method (de Hoop, 1960) in a homo-
geneous half-space. Excellent agreement between both so-
lutions demonstrates the accuracy of the finite-element
method.

We solve Lamb’s problem in the heterogeneous veloc-
ity structure described by the community velocity models
(CVM 4.0 and CVM-H 5.2) to obtain the theoretical station-
to-station Green’s functions. Our computational domain
covers a large area (250:4 × 170:4 km) of southern Cali-
fornia (Fig. 1) and extends to a depth of 36 km below sea
level. The four corners of our computational domain are
at (�118:681°, 35.433°), (�119:55°, 34.08°), (�117:149°,
33.023°), and (�116:281°, 34.376°). A slightly unstructured
mesh is used (see Fig. 7 of Ma and Liu, 2006). The element
size is about 100 m in the upper 3 km and reaches 400 m near
the bottom, to maintain ∼10 nodes per S-wave wavelength.
This results in a total of about 180 million elements and
nodes. The minimum shear-wave velocity in the simulations
is 500 m=sec. We simulate waves up to 0.5 Hz. Because of
the important effects of surface topography on propagation
of surface waves (Ma et al., 2007), we incorporate the sur-
face topography in the simulations. The PML absorbing
boundary is used along all of the boundaries of the computa-
tional domain except for the free surface. Because both com-
munity velocity models do not have anelastic attenuation
properties of the velocity structure, we only consider elastic
wave effects.
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Figure 5. Green’s functions from correlation of vertical veloci-
ties at all 56 stations with the vertical velocity at station ADO. The
Green’s functions are band-pass filtered between 0.1 and 0.2 Hz.
The gray dashed lines show the move-out of 2:8 km=sec for refer-
ence. The complex waveforms indicate the heterogeneity of the un-
derlying velocity structure of the region.
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For our six reference stations (ADO, ALP, MOP, RPV,
SDD, and RVR) we calculate theoretical Green’s functions
by applying a vertical force at each, which provides 315 the-
oretical Green’s functions to be compared with the corre-
sponding ambient-noise Green’s functions. Figure 7 shows
snapshots of vertical velocity response across the whole
computational region in both the CVM 4.0 and CVM-H 5.2
due to a force with Gaussian time dependence [f�t� �
e�0:5�t�t0�

2

and t0 � 5 sec] at station ADO. The same force
is used in all of the finite-element simulations. The wave
fields in this simulation correspond to the Green’s functions
obtained for CVM 4.0 and CVM-H 5.2 convolved with an ap-
plied time dependence, f�t�. The wavefronts are almost cir-
cular in the first 20 sec, indicating a laterally homogeneous
velocity structure for the Mojave area in both community
models. Excellent absorption of Raleigh waves by the PML
is apparent from the lack of edge effects in the simulation.
The heterogeneous basin models have a significant effect on
wave propagation, as seen at 44 and 56 sec. The different
interference patterns of waves in the basin are caused by the
large differences between CVM 4.0 and CVM-H 5.2 (Fig. 2).

Results

Figure 8a shows the finite-element Green’s functions at
all 56 stations due to the force f�t� at station ADO as well as

the ambient-noise Green’s functions. Because the ambient-
noise Green’s function contains energy predominantly in
the 0.1–0.2 Hz frequency band, we band-pass filtered all
of the waveforms between 0.1 and 0.2 Hz. Strong waveform
similarity is seen at most stations. The correlation coefficient
between the ambient-noise and finite-element Green’s func-
tions is shown in each comparison. We see, in general, a
better correlation of the finite-element Green’s functions
in CVM 4.0 with the ambient-noise Green’s functions than
those in CVM-H 5.2 for these paths.

The strong waveform similarity allows an accurate time-
lag measurement between the finite-element and ambient-
noise waveforms (Fig. 8a). We obtain the time lag by shifting
the finite-element waveform with respect to the ambient-
noise waveform to maximize the cross-correlation coeffi-
cient. We allow the time-lag to vary between �4 and 4 sec.
The observed differences in surface-wave arrival times sug-
gest that both community velocity models have biases. For
the paths from ADO, most finite-element waveforms in both
velocity models arrive earlier than the ambient-noise wave-
forms, indicating that both models have material velocities
that are too fast for these paths. The mismatch is greater
for CVM 4.0, which is slightly faster than CVM-H 5.2 for most
of these paths.

Comparisons of waveforms at all 56 stations from ALP,
MOP, RPV, SDD, and RPV are shown in Figures 8b,d,e,f.
Strong waveform similarity can be seen for most paths, with
the time lag between waveforms noted. There are some paths
with a poor correlation between the ambient-noise and finite-
element Green’s functions, such as ADO-LDR and ADO-
SMS in both community models and ADO-BRE and
ADO-STC in the CVM-H 5.2 (Fig. 8). This mismatch could
reflect either a shortcoming of the velocity model and/or the
ambient-noise Green’s functions.

For similar waveforms, the time lags between the
ambient-noise and finite-element seismograms indicate the
sense in which the community velocity models might be
off. We calculate the time lags between the two but only
show the results (Fig. 9) for which the waveforms are suffi-
ciently similar by requiring the correlation coefficient to be
above 0.3 and the interstation distance to be larger than
30 km, because the station-to-station Green’s functions for
shorter distances are likely contaminated by local noise
sources. Of the 315 possible paths, these requirements leave
279 paths for CVM 4.0 and 229 paths for CVM-H 5.2. The
maps illustrate the paths where the two community velocity
models are affected by biases in the material velocities.

We plot the correlation coefficients for all of the ray
paths (interstation distance greater than 30 km) as a function
of the length and azimuth of the ray path in both community
velocity models and the histograms of the correlation coeffi-
cient (Fig. 10). We also plot the difference in the correlation
coefficient between CVM 4.0 and CVM-H 5.2 for each path.
In total, there are 295 ray paths. The azimuth (between 0° and
180°) is defined as the angle from the north rotated clock-
wise to the ray path. We find that the correlation between
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Figure 6. Comparison of the finite-element solution with the
analytical solution for the Lamb’s problem in a homogeneous
half-space (ρ � 2700 kg=m3, VP � 6000 m=sec, and VS �
3464 m=sec) at a point 30 km from the source at the surface.
The vertical force at the source has a Gaussian type f�t� �
e�2�t�t0�

2

, where t0 � 3 sec. The element size in the finite-element
simulation is 300 m. Both solutions are low-pass filtered at 1 Hz.
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Figure 7. Snapshots of vertical surface velocity (0–0.5 Hz) in the finite-element simulation due to a vertical force at station ADO using
the CVM 4.0 and CVM-H 5.2. The green contours show the topography. Stations used in our study are denoted by red triangles. Amplitude
scale is saturated to better illustrate features. An excellent absorption of Rayleigh wave is seen by the PML. Large differences in wave fields
can be seen in the basins.
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Figure 8. Comparisons of the vertical velocity waveforms using the Green’s function from ambient noise (blue) with finite-element
seismograms (red) assuming that the virtual source is at station (a) ADO, (b) ALP, (c) MOP, (d) RPV, (e) SDD, and (f) RVR. Both time
series are band-pass filtered between 0.1 and 0.2 Hz. Amplitudes are normalized. The first trace for each station uses the CVM 4.0 for the
finite-element simulation, while the second trace uses the CVM-H 5.2. The time lag (positive being that the ambient-noise seismogram arrives
earlier) and normalized correlation coefficient between the two waveforms are denoted above and below each trace. The stations are sorted by
the distance to the virtual source in an ascending order. The black box includes the stations with distance to the virtual source smaller than
30 km, which are excluded in our statistical analyses. (Continued)
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Figure 8. Continued.
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Figure 9. The ray paths and time lags between the ambient-noise and finite-element Green’s functions are mapped on the Earth’s sur-
face assuming that the virtual source is at station ADO, ALP, MOP, RPV, SDD, and RVR, respectively. Only paths with normalized cross-
correlation coefficient above 0.3 and interstation distance greater than 30 km are shown. Ray paths are approximated by straight lines. The
negative time lags (ambient-noise arrivals later) are shown in blue and positive time lags (ambient-noise arrivals earlier) are in red. The
amplitude of the lags is denoted by the radius of the circle. The scale is shown at the bottom of the figure. (Continued)
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the finite-element and ambient-noise solution is largely inde-
pendent of both interstation distance and azimuth. In CVM
4.0, 73% of paths have a correlation coefficient greater than
0.5, indicating a good correlation, whereas for CVM-H 5.2,
only 49% of the ray paths show such a good correlation. 5%
of the paths in CVM 4.0 and 22% of the paths in CVM-H 5.2
have a correlation coefficient below 0.3. Of the 295 paths,
the mean correlation coefficient is 0.62 for CVM 4.0 and
0.49 for CVM-H 5.2; for 74% of the paths, CVM 4.0 has a
larger correlation coefficient. All of these metrics indicate
greater waveform similarity between the data and CVM
4.0 than between the data and CVM-H 5.2.

The time lags for ray paths with the correlation coeffi-
cient above 0.3 in both community velocity models and the
interstation distance larger than 30 km tell a different story
(Fig. 11). There are total 225 ray paths. The scatter of time
lags in CVM-H 5.2 is larger than in CVM 4.0. Here again, time
lag does not vary systematically with the interstation distance
or azimuth. In CVM4.0, 77% of the ray paths show a negative
time lag, indicating that CVM 4.0 generates material veloci-
ties that are too fast, whereas in CVM-H 5.2, only 61% of the
ray paths show a negative time lag. It is worth noting that
several time-lag measurements in both CVMs reach the
time-lag limit we imposed (�4 and 4 sec). The median time
lag is �0:71 sec for CVM 4.0 and �0:42 sec for CVM-H 5.2,
suggesting that CVM-H 5.2 does a better job at predicting

arrival times than CVM 4.0. If we compare the predictions
of the models to each other, we find that for 67% of the
ray paths, the time lags in CVM 4.0 are smaller than for
CVM-H 5.2, indicating that CVM 4.0 has velocities that are
faster than CVM-H 5.2 along the paths we sampled.

Discussion

Our analysis demonstrates the advantage of using ambi-
ent noise to test velocity models. Each station acts as a virtual
source and the source excitation is known: a unit force ap-
plied at the station. Alternative assessments of 3D velocity
models are available using the Z=H ratio (Shikato et al.,
2007; Yano et al., 2007) of Rayleigh waves or waveform data
from small earthquakes (Komatitsch et al., 2004; Rogers
et al., 2008). As noted in Rogers et al. (2008), the assessment
using earthquake data is sensitive to uncertainties in the
earthquake source location, origin time, and source time
function. Also, earthquakes can be infrequent and their loca-
tions cannot be predetermined or controlled; however, an
important advantage for earthquake data is that they contain
higher frequency energy than the ambient-noise Green’s
functions.

Derivations of the conditions under which Green’s func-
tions will emerge from ambient noise assume an isotropic
distribution of the noise sources and/or scatters for the true
Green’s function to be retrieved—a condition that might not

50 km 50 km
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N N
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Figure 9. Continued.
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be satisfied in nature. The scattering caused by the small-
scale heterogeneities in the crust and the randomization of
noise sources when taking very long seismic noises would
help us to realize this condition that may still not be realized.
The sense of the bias in such measurements would be to in-
crease the velocities. That is, the apparent velocity (phase
velocity) for a nongreat circle arrival that might arise from
a nonisotropic distribution of noise sources would be higher
than the true velocity. The fact that the mean residuals in our
results cluster about zero supports the notion that our results
are not strongly biased by a nonisotropic recorded wave
field. We have shown that the Green’s functions are stable
over time. Future work may clarify whether and how much
the uneven distribution of noise sources might affect the ve-
locity of the surface-wave Green’s functions.

Sabra et al. (2005a) showed that ambient-noise Green’s
functions are sensitive to the orientation of station-to-station
path with respect to the coast in southern California. The
Green’s functions for paths that are perpendicular to the coast
have a larger SNR than paths that are parallel to the coast. We
observe the same effect; however, although the SNR is small,
there is enough signal for a reliable measurement (see sta-
tions LDR and RDM in Fig. 8a, for example). We find no
dependence of correlation coefficient or time lag between
the finite-element and ambient-noise waveforms on the inter-
station distance or azimuth.

Although the original noise time series has energy be-
tween 0.01 and 5 Hz, the Green’s functions obtained from
correlation have a dominant frequency band of 0.1–0.2 Hz
for most paths, which is controlled by the frequency band
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Figure 10. Plot of the correlation coefficient and the correlation coefficient difference between CVM 4.0 and CVM-H 5.2 (correlation
coefficient in CVM 4.0 minus that in CVM-H 5.2) as a function of interstation distance and azimuth for all of the station-to-station paths with
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total of 295 paths in each community velocity model. 73% of the ray paths in the CVM 4.0 and 49% of the ray paths in the CVM-H 5.2 have a
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below 0.3. CVM 4.0 has a larger correlation coefficient than CVM-H 5.2 along 74% of the ray paths. All indicate that CVM 4.0 correlates better
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of microseisms (Aki and Richards, 1980). These long-period
Green’s functions are most sensitive to the velocity structure
in the upper 10 km of the crust. The minimum shear-wave
velocity limit (500 m=sec) we impose for the near-surface
sediments in the finite-element simulations should have a
minimal effect on our results. Pushing the ambient-noise
Green’s function to higher frequencies will place stronger
constraints on the velocity models, and it is an important re-
search frontier; however, it is likely to be challenging to ex-
tract coherent wave fields at increasingly higher frequencies.

We note that complex waveforms of either the finite-
element or ambient-noise results can affect our estimate of
time lag and correlation coefficient between them. For exam-
ple, for the station pair (RPV-WLT, Fig. 8d), the correlation
coefficient between the finite-element waveforms in the
CVM 4.0 is 0.75; however, it decreases to 0.37 in the

CVM-H 5.2. This is largely due to the late reverberations
in the CVM-H 5.2 time series. The finite-element waveforms
in the CVM-H 5.2 tend to have more reverberations in the later
part of time series than those in the CVM 4.0 in most of the
comparisons, which is probably due to the slower and/or
more heterogeneous material velocities in the CVM-H 5.2
in the sedimentary basins. This may explain why the
CVM-H 5.2 has a lower waveform similarity with the ambi-
ent-noise results. It is conceivable that seismic attenuation
would dampen the late reverberations to some extent; how-
ever, at this stage we prefer to avoid the temptation of intro-
ducing an adjustable parameter.

The time lags we found are defined along the whole
length of each ray path. Therefore, it does not constrain di-
rectly where the community velocity models might be fast or
slow. The time-lag data in our analysis can be used directly in
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Figure 11. Plot of the time lag and the time-lag difference between CVM 4.0 and CVM-H 5.2 (time lag in CVM 4.0 minus that in CVM-H
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paths in CVM-H 5.2 show that the community velocity model is too fast. CVM 4.0 is faster than CVM-H 5.2 along 67% of the paths.
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seismic tomography, and because they will include finite-
frequency effects, they are particularly suitable for input
to the adjoint method (Tromp et al., 2005; Liu and Tromp,
2006) or the scattering-integral formulation (Chen et al.,
2007) to develop improved community velocity models.

Conclusions

By correlating monthly ambient seismic noise data re-
corded at 56 broadband seismic stations in southern Califor-
nia, we determine station-to-station Green’s functions. These
Green’s functions provide an independent and important test
of the current SCEC community velocity models (CVM 4.0
and CVM-H 5.2).

Ambient-noise Green’s functions and theoretical
Green’s functions, calculated using the finite-element
method of Ma and Liu (2006) in the CVM 4.0 and CVM-H
5.2, for nearly 300 paths with a good azimuthal coverage
of the Los Angles Basin, show strong waveform similarity
in the dominant surface waves between 0.1 and 0.2 Hz.
The CVM 4.0 predictions have stronger waveform similarity
with the ambient-noise Green’s functions than those from
CVM-H 5.2. On the other hand, CVM-H 5.2 does a better
job at predicting arrival times. Measurements obtained from
the ambient-noise approach can be used directly for refine-
ment of community velocity models. Moreover, the ambient-
noise approach will allow us to control the location of virtual
sources that can be arranged to target parts of the velocity
models that are poorly constrained or areas of critical impor-
tance for seismic hazard analysis.

Data and Resources

Data used in this study can be obtained from the South-
ern California Earthquake Data Center at www.data.scec.org.
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