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INTRODUCTION

Using Hi-Net data in southwest Japan, Obara (2002) discov-
ered a new type of seismic source that he called nonvolcanic
tremor due to its similarity to volcanic tremor, but distinct ori-
gin. Tremor is characterized by weak signals, typically of deep
(>30 km) origin, that are most prominent in the 1–10 Hz
frequency band. At about the same time, slow-slip events and
tectonic tremor were found to be strongly correlated indicating
that tremor accompanied these events (Obara, 2002; Rogers
and Dragert, 2003). Tectonic tremor is challenging to locate
because it is an extended and persistent signal, and lacks the
clear P- and S-wave arrivals that are typical of earthquakes. De-
spite this, there is clear modulation of tremor amplitudes that
can be tracked between stations and used to locate the tremor
source. Several envelope techniques (Obara, 2002; McCaus-
land et al., 2005; Wech and Creager, 2008; Aguiar et al., 2009)
were developed for this purpose.

Low-frequency earthquakes (LFEs) were discovered by
Katsumata and Kamaya (2003) and have since proven to be
critical to understanding the genesis of tectonic tremor. Shelly
et al. (2006) showed that LFEs correlate strongly with times of
tremor and that they occur on the plate interface. Shelly et al.
(2007a) showed that tremor consists of swarms of LFEs, and by
inference occurred on the plate interface as well. Follow-up
work (Ide, Shelly, Beroza, 2007) demonstrated that LFEs per
tremor occurred as shear slip and hence were part of a family of
slow earthquakes (Ide, Beroza, et al., 2007).

Initially, LFEs were found through visual inspection by en-
terprising network analysts in Japan (Beroza and Ide, 2011).
LFEs have been identified as periods of high-amplitude arrivals
by the same visual inspection technique (Shelly, 2009). Because
LFEs have proven so useful for studying tremor, other methods
have been developed to identify them.

First, LFEs from the Japan Meteorological Agency (JMA)
catalog were used as templates to find other LFEs by cross
correlating the signal of the LFE with tremor (Shelly et al.,
2007a,b). For the cases where no previous templates exist,
Brown et al. (2008) developed an autocorrelation method
to find the LFEs. This method considered each small window
as a possible detection by cross correlating each window with
all the others (Brown et al., 2008) and searching for repeats.
To date, LFE detection methods do not fully exploit the fact
that LFEs repeat, with similar waveforms, not once, but multi-
ple times.

In this study, we take advantage of the similarity of LFEs
within tremor by developing a test of significance that explic-
itly accounts for short-time correlations in the data, and the

likelihood that the sources repeat more than once. To do this,
we use the structure of how similar windowed waveforms are
linked with one another. A complicating factor is that these
links do not form closed loops that satisfy closure, but have
links that may be incomplete. Despite this lack of closure,
we would like to take full advantage of the structure of similar
seismograms. Our problem maps very closely to one that has
been solved previously. One of the initial web page searching
algorithms implemented by Google used the links between pa-
ges to calculate the quality of a document. This data mining
algorithm is known as PageRank and was developed by Page
et al. (1999). If we relate this to our problem, but substitute
candidate windows in place of web pages, and we know that
these windows are linked to one another, we can use the Pag-
eRank algorithm to rank them. In applying PageRank to
tremor data, we find the ranking of a specific window and show
statistically how windows rank relative to each other. This tells
us which windows are most likely potential LFEs, and can be
used to construct templates through waveform stacking. These
stacks provide high signal-to-noise ratio (SNR) templates that
can be used to find other LFEs.

We use the April 2006 Shikoku, Japan, tremor episode to
test our method due to the wealth of available information
concerning tremor in this area (Obara, 2002; Shelly et al.,
2006, 2007a; Ide, 2010) and this specific tremor episode has
been analyzed in great detail (Shelly et al., 2007b). By applying
the PageRank approach we create robust LFE templates that
match known LFEs from the JMA catalog. Using these tem-
plates we find detections in data for the April episode with
similar results to Shelly et al. (2007b) for the same time periods.
We also find detections for weaker segments of tremor that
were not previously reported. Our approach suggests a new ap-
proach to differentiate tremor signals from noise for sparse data
sets using the fact that PageRank behavior is qualitatively dif-
ferent for tremor versus noise.

MULTIPLICITY OF REPEATS

To find LFEs within the tremor data, we begin with the au-
tocorrelation method of Brown et al. (2008), which detects
potential LFEs in a pair-wise manner. This method finds
the signals by autocorrelating each window with all other win-
dows in time during a tremor segment of interest. We divide
the tremor data in 10 s windows lagged by 0.08 s or 2 samples
for data with 25 samples per second. This creates a population
of 44,900 windows for 1 hour of data. The population of
values for the correlation coefficients (CC) between these
windows closely follows a normal distribution (Fig. 1). We
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have applied the Fisher transformation to the CC values,
in which

z � 1
2
�ln�1� CC� − ln�1 − CC��: �1�

This transformation accounts for the fact that the distrib-
uted values cut off at CC � �1. With this, we can assume
normal statistics for the distribution of the CC values. We find
that in our case the transformation made no significant differ-
ence in the distribution, due to the small values of CC (Fisher,
1973). For this reason, we base our detection threshold on a
normal distribution with zero mean and focus on the large pos-
itive values to declare a positive detection. For a normal dis-
tribution, σ � 1:253 ×meanabsolutedeviation (MAD). MAD
is the mean of the absolute deviations of a set of data about
the data’s mean and is a measure that is chosen to be insensitive
to outliers. Our objective is to find the positive outliers in the
data, which represent the repeating signals within the tremor.
Given that the MAD is not affected by outliers it will not bias
our estimate of σ, so we can use this as a measure to establish a
threshold of detection. By assuming zero mean (Fig. 1), we can
calculate the MAD directly from the population of CC values
and estimate σ from this. Here we have chosen to use the mean
instead of the median which has been preferred in previous
analyses (Shelly et al., 2006; Brown et al., 2008). We found
that for a very large set of window pairs the computational
costs of calculating the median are substantial whereas the
mean is easily computed. With this, we perform the autocor-
relation to find detection pairs for each of the stations analyzed
with a low positive threshold of 3σ, which corresponds to a
two-sided significance level of 99.7%. This level, which we
use to define a positive correlation, is a trade-off between a

higher threshold, which will provide more confident matches
at the cost of fewer positives for our low-SNR data, and a lower
threshold, which will provide more positives, but with less con-
fidence in the reliability of individual matches. The noise level,
and therefore the statistical behavior of the autocorrelations,
varies between stations so we perform the analysis one station
at a time.

Finding detection pairs within the tremor data does not
ensure closure because LFEs repeat multiple times during a sin-
gle tremor episode (Shelly et al., 2007a) and the SNR is low.
Figure 2 shows this lack of closure schematically. Window A
correlates significantly withWindow B and Window D. Later
in time,Window B matches withWindow C, but Window A
does not match with Window C, and Window B does not
match withWindow D. Such a lack of closure is inevitable with
low-SNR signals, and complicates detection statistics, yet we
have to make the best of the information we have. That is, we
want to use all the links, and the complex hierarchical relation-
ships they express, to identify the windows most likely to re-
present LFE signals.

We use a tool developed for data mining to address this
problem. Specifically we apply the PageRank algorithm to the
detection pairs from the autocorrelation process to determine
which windows have the most number of links. We then cal-
culate a ranking for each window and if the probability is high,
this suggests a robust LFE detection for that window within
the data.
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▴ Figure 1. Distribution of correlation coefficient (CC) values for
all window pairs of 1 hour of tremor data on station YNDH.N. The
black line represents the theoretical normal distribution calcu-
lated using σ � 1:253 × MAD. Here, MAD is computed from all
window pairs.
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▴ Figure 2. Window pair links: A, B, C, and D are windows that
were found to be a match with another window, given the thresh-
old selected. This figure shows how all these pairs are linked to-
gether. Some windows are linked directly: A → B and B → C.
Other windows are linked indirectly: A is linked indirectly to C (be-
cause B → C), and B is indirectly linked to D (because C → D).
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THE PAGERANK APPROACH

The PageRank method calculates the probability of importance
of each web page in a set of web pages, assembled in a vector.
These probabilities are based on the number of links each web
page has, assigning a high probability to web pages with high
number of links and low probability to pages with low number
of links. Specifically, each of the elements of this vector is the
probability that a random surfer will visit a particular page on
the web (Page et al., 1999; Moler, 2011). Like a Markov Chain,
PageRank is a random, iterative method where the probability
at one stage in the iterations is computed from the previous
stage, with an initial condition of equal probabilities for all pa-
ges. For our problem of seismic data, we form a connectivity
matrix G from the detection pairs found during the autocor-
relation that contains all the information on links between all
windows. If we find a match between window i and window j
in time, then gij � 1, otherwise gij � 0. Now, if we consider p
to be the probability of the random walk following a specific
link to a window, and the probability of an arbitrary window to
be chosen as 1 − p, then the probability that a certain random
window is chosen will be δ � �1 − p�=n, in which n is the total
number of windows. With this, we form a matrix A that scales
the G matrix by the sum of its columns:

aij �
�
pgij=cj � δ: cj ≠ 0
1=n: cj � 0 ; �2�

in which cj �
P

igij and A is the transition probability matrix
(Moler, 2011). We then solve equation (3) iteratively to find
the PageRank:

x � Ax: �3�

This equation has a unique, nonzero solution if a scaling
factor is chosen such that

P
ixi � 1. Given this condition, x

is the steady state vector of A and therefore the PageRank
(Moler, 2011).

As a starting point, we assign equal probabilities to each
window of 1=n and then iterate equation (3) until x converges
to a desired tolerance. Here, we have selected a standard value
of p � 0:85 and a tolerance of 0.01 to calculate the PageRank
for each window in the tremor analysis. As we iterate, we cal-
culate the 1-norm between the probabilities of the previous
and current iteration to estimate the tolerance. If it is below
0:01=n, we stop the iteration and use that x for PageRank.

To test our method, we use data from eight stations in
Shikoku Japan (Fig. 3) during the April 2006 tremor event.
This group of stations was selected due to the locations of
a large number of well-studied LFEs that have occurred within
this area (Shelly et al., 2007b). We analyzed 1 hour of data at
25 samples per second from 16 April 2006, where a large num-
ber of LFEs have been previously detected using templates
(Shelly et al., 2007b). We chose a time period where the tremor
signal is small at the beginning and increases in amplitude to-
ward the end (Fig. 4) to understand differences in the behavior
of PageRank. Using these data, we first calculated the autocor-

relations using the population of 44,900 windows created from
the 10 s windows lagged by two samples. We then applied the
PageRank approach to the detection pairs to find the proba-
bilities for each window. Figure 4 shows the PageRank values
for each window in one hour of Japan data for several stations.

Once we have computed the PageRank for each window,
we know which windows have the highest probabilities of
being repeating signals, and are the most likely to be LFE wave-
forms. A large PageRank value here signifies a window with a
large number of links to other windows, both direct and indi-
rect. Figure 4 shows that the PageRank values get higher as the
tremor amplitude increases for all three stations shown. It is
also noteworthy that there are high values toward the begin-
ning where tremor amplitude is smaller.

We use the windows with the highest PageRank values to
create template signals by stacking the matched windows. To
exploit the multiplicity of the LFEs, we use both the direct and
indirect matches of the high-ranked windows (Fig. 4) to create
the stack for the template LFE. Figure 5 shows a stack with all
the windows that were found to be a match to a window with a
high number of matches for station YNDH.N during the one
hour of tremor data analyzed. On the left, the stacked signal
(Fig. 5a) is formed by windows with direct links only. On the
right (Fig. 5b), the stacked signal includes windows from both
direct and indirect links to the window with high PageRank.

We form the template from both the windows that directly
match the main window, and also all the windows that matched
each one of those initial matches. These are the windows with
indirect links to the main window. The advantage of this proc-
ess can be seen in Figure 6, which shows a comparison between
the first, second and third level stacks for several stations used in
the analysis. The signal of the stacked waveform improves
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▴ Figure 3. Map of Shikoku, Japan, with the location of stations
(dark gray triangles) used in our analysis. Circles represent LFE
locations from Shelly et al. (2007b) during the tremor episode of
16 April 2006. The inset map shows the location of the study area
in Japan.
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significantly once a second level of detections is added to the
stack (windows with indirect links). The difference is apparent
from level 1 to level 2 (Fig. 6), where each signal has less noise
around the main peak of the largest amplitude arrival.

Here, each level of stack was created with a different num-
ber of windows. In the case of level 1, the lowest number of
windows was used because these stacks only include the win-
dows with direct links to the highest ranked window. Each
window from the direct links has its own set of links. These
would be the first level of windows with indirect links to the
main window. Level 2 has a larger number of stacks than level 1
because it also includes these windows, the first level of win-
dows with indirect links. Adding these windows to each stack
improves the signal for each template (Fig. 6).

We can add another level of links by stacking the windows
with links to the first level of windows with indirect links.
These stacks are shown in Figure 6 as level 3. We can see that

adding one more level of windows does not change the stack
significantly and the number of signals used is very similar to
level 2. The reason for this is that the windows added at this
step are mostly windows that were already present as links to
other windows. For that reason they do not contribute inde-
pendent information to the stack. We note here that in some
cases the number of windows used for level 3 is slightly lower
than in level 2. This is caused by the way we have defined the
near repeat window elimination in the processing. As we scan
the list of windows, we eliminate the near repeats by finding
the window that was paired with the best CC value. We do this
in ascending numerical order for a 3 s time span. If the window
with the highest CC was not the first on that group then this
pushes the selected window number forward. These might
cause the next group of windows to be considered now as a
near repeat if the window number of the first of the group
is now less than 3 s than the previously selected one. Adding

▴ Figure 4. One hour of tremor data (black) during the tremor event in Shikoku, Japan, on 16 April 2006 for stations KWBH, TBEH, and
YNDH associated to its PageRank values (gray). The PageRank values are normalized by the total number of windows analyzed.
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one more level of windows only finds more similar windows to
the signals used in level 2 and some of these might fill some
small gaps in, causing a few more near repeats to be eliminated.
Given the similarity of the stacks from level 2 and level 3
(Fig. 6), this suggests that it is only necessary to create the stacks
using one level of windows with indirect links to get an opti-
mum result for creating a template waveform.

We validate the templates created with these stacks by
comparing the stacked signals to known LFEs from the JMA
catalog. We selected various events from the catalog that locate
in the same general area as the LFEs reported for the April 2006
sequence (Shelly et al., 2007b). Figure 7 shows the waveform
comparison between the LFEs from the JMA catalog and the
templates created in this study for the stations available in
the catalog. The stacks created for the five stations, shown
in Figure 7, match the three different events from the catalog
and preserve the move-out across the network.

A significant advantage to the PageRank approach is that it
can also be used to distinguish between tremor and noise. We
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▴ Figure 5. Stacked signal (top) formed by summing all the win-
dows (a) using only windows with direct links (221 traces) and
(b) using windows with direct and indirect links (345 traces) that
were found as a match to the window with the highest PageRank.
The grayscale plot (bottom) of each one of the windows forming
the stack.
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▴ Figure 6. Plot of stacked signals formed by windows of three
different levels of links. Level 1 shows stacks created using only
the windows with direct links to the window with highest Pag-
eRank. Level 2 shows stacks created with windows with direct
links and one level of indirect windows (windows matched to
the matches of the main window). Level 3 shows the stacks cre-
ated with direct windows and two levels of indirect windows. The
number on the left of each plot shows the number of traces that
were used to create each stack.
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▴ Figure 7. Three different LFEs from the JMA catalog (gray) com-
pared with one template stack (black) created using the PageRank
approach from an hour of Shikoku tremor data from 16 April 2006.
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compared an hour of tremor data from the 16 April 2006 episode
to an hour of noise data for the same stations in Shikoku. Figure 8
shows the differences between the normalized PageRank histo-
grams for three different stations used in this analysis. These his-

tograms are significantly different between tremor and noise
because tremor has many more windows with high PageRank.

If the data has a lower SNR, then this characteristic of
PageRank could be used to help distinguish tremor from noise.
Because the differences show up in single components at differ-
ent stations independently, it should also help to distinguish
tremor from noise for sparse data.

APPLICATION TO CONTINUOUS DATA:
SOUTHWEST JAPAN

Having found robust signals to use as LFE templates, we ap-
plied these to search through continuous data during the Shi-
koku event in April 2006. We picked data where it is clear that
the strong tremor episode is getting started, so we can observe
small tremor bursts but also larger amplitude, more significant
bursts (Fig. 9) to test the ability of our detector to find LFEs
within lower SNR tremor data. We cross correlate the tem-
plates with 10 s windows and move the window every two
samples through the data to find matches. We perform this
analysis one station at a time using a low threshold (3σ) and
later compare the results between stations to distinguish be-
tween true and false detections.

Figure 9 shows the second half of 16 April 2006 for Shi-
koku Hi-Net data. This data set shows small tremor bursts
between 12,000 and 24,000 s and larger amplitude tremor
bursts toward the end of the day, around 32,000 s. Here we
used only stations were it was possible to compare our LFE
template to LFE picks present in the JMA catalog (Fig. 7).
To associate detections found for each station (Fig. 9a), we
compare all stations within a 2 s window and declare a positive
detection if three or more of the stations show a detection
within those 2 s. Using this simple association algorithm we
find very similar results to Shelly et al. (2007b), particularly for
the stronger tremor burst toward the end of 16 April 2006. We
also find a large number of detections that were missed previ-

▴ Figure 8. Histograms of normalized PageRank values for tremor
data (left) and noise data (right) for three different stations used in
the analysis. Noise data shows large numbers of low PageRank
values, whereas the tremor data have higher PageRank values.
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▴ Figure 9. Half day of data during 16 April 2006 of several stations in Shikoku showing the beginning of the tremor episode. (a) Detections
(black) found individually for each station using the stack createdwith the PageRank approach for six of the stations in the analysis. (b) Detections
found on at least three of the stations within a 2 s window (top), compared to Shelly et al. (2007b) detections (bottom) using template matching.
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ously, during smaller tremor bursts (Fig. 9b) between 12,000
and 24,000 s and between 32,000 and 36,000 s.

DISCUSSION AND CONCLUSIONS

We use the PageRank approach to detect LFEs during the April
2006 tremor episode in Shikoku Japan. We selected this data
set to facilitate the comparison of results with Shelly et al.
(2007b) to test our method’s ability to detect LFEs within data
with both high and low SNR. Analyzing one station at a time,
and applying low initial detection thresholds, we created robust
LFE templates that match real LFE signals from the JMA catalog
for this tremor episode without the use of any previous knowl-
edge of event times. These templates include windows with
both direct and indirect links to the highest PageRank window,
which improves the SNR of the template created for each sta-
tion. These templates will facilitate the detection of other
events within the data.

We cross correlated the stacks we developed using the Pag-
eRank approach to find other LFEs within the April 2006
tremor episode in Shikoku, Japan. We find that our detections
are comparable to detections found by Shelly et al. (2007b)
where the tremor burst has large amplitudes compared to the
rest of the time. We also find a number of detections within
smaller tremor bursts that were previously missed. This sug-
gests that the PageRank approach is a good tool for finding
LFEs within lower SNR data.

We have also found that the PageRank distribution differs
between tremor and noise. By looking at histograms of
PageRank values we can differentiate between tremor and
noise because unlike noise, tremor data has large numbers of
high PageRank values due to the significant links between win-
dows within a short period of time. This could prove to be a
useful tool for automated tremor detection and for detecting
tremor where it has not been detected previously, or where it
has been found but the signal is not as prominent as it is on
Hi-Net data. Finally, although we have applied it to detect
LFEs within tremor, the PageRank approach may be useful
for other situations such as swarms or aftershock sequences,
for which many similar waveforms may be present.
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