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A B S T R A C T

While techniques for retrieval of seismic velocities from wavelet arrival times in ambient

noise correlations are now well established, interpretation of wavelet amplitudes

remains unsatisfactory. It is clear that such amplitudes contain information on seismic

attenuation, but they are also affected by ambient noise intensity, site amplification, and

any nonlinear preprocessing that may have been applied to the noise signals.

Disentangling these many factors in order to reliably recover seismic attenuation is

challenging. It is argued here that noise intensity, while rarely isotropic or homogeneous,

may nevertheless be modeled by a radiative transfer equation. It is then shown that this

recognition sufficiently constrains the noise intensity that we may hope to fit measured

correlation amplitudes to models for spatially varying attenuation and site amplification

factors. One-bit preprocessing, it is shown, is not compatible with such fits except in the

special case of spatially constant noise intensity. An alternative procedure for

accelerating convergence is suggested. Numerical simulations for a case of homogeneous

attenuation and homogeneous seismic velocity are presented in support of the

assertions. Attenuation, site factors, and noise intensity are successfully retrieved from

correlations of numerically simulated imperfectly diffuse waves measured on a linear

array of sensors.

� 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

Bien que les techniques pour la récupération des vitesses sismiques dans les corrélations

de bruit ambiant soient maintenant bien établies, l’interprétation des amplitudes reste

insatisfaisante. Il est clair que ces amplitudes contiennent des informations sur

l’atténuation sismique, mais elles sont également affectées par l’intensité du bruit

ambiant, l’amplification du site et les prétraitements non linéaires. Séparer ces nombreux

facteurs, pour récupérer l’atténuation sismique est un défi. Il est soutenu ici que l’intensité

du bruit, bien que rarement isotrope et homogène, peut néanmoins être modélisée par une

équation de transfert radiatif. Il est ensuite montré que cette reconnaissance contraint

suffisamment l’intensité du bruit. En conséquence, nous pouvons récupérer l’intensité,

l’atténuation et l’amplification des sites. Un prétraitement one-bit, comme il est montré,

n’est pas compatible avec la récupération. Une autre procédure pour accélérer la

convergence est suggérée. Des simulations numériques sont présentées à l’appui de ces
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affirmations. Facteurs d’atténuation, facteurs des sites et intensité du bruit sont récupérés

avec succès à partir de corrélations de simulations numériques d’ondes imparfaitement

diffusées, mesurées sur un réseau linéaire de capteurs.

� 2011 Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.
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1. Introduction

Interest in diffuse seismic waves has seen an extraor-
dinary growth over the last decade, driven in large part by
the promise of noise correlations to reveal seismic
velocities and changes in the earth’s elastic properties.
Key to this was the observation (Lobkis and Weaver, 2001;
Weaver, 2005; Weaver and Lobkis, 2001) that fully
equipartitioned diffuse waves permit, on cross-correlating
the apparent noise, retrieval of the Green function, where
the Green function is the signal one would have at one
receiver if the other were replaced with an impulsive force.
Further theoretical arguments (Roux et al., 2005a; Snieder,
2004; Wapenaar, 2004; Weaver and Lobkis, 2004), and
laboratory demonstrations (Derode et al., 2003; Larose
et al., 2004; Malcolm et al., 2004) in support of this
conclusion quickly appeared.

Applications in long-period seismology have been
particularly striking. Tomographic maps of Rayleigh wave
velocity have been constructed (Lin et al., 2008; Sabra et al.,
2005; Shapiro et al., 2005). The literature also reports
retrieval of waveforms due to Love waves, and bulk waves
(Roux et al., 2005b), and even to measures of Rayleigh
wave anisotropy (Lin et al., 2008). Dense large arrays
consisting of up to hundreds of seismic stations permit
high resolution; the worldwide availability of their daily
records for periods of years lends itself naturally to the
necessary kind of data processing.

The original theoretical basis for the relation is
restrictive; ambient seismic noise fields are rarely fully
diffuse in the required manner. Long-period seismic noise
fields are directional. Nevertheless numerous researchers
report robust retrieval of travel times between distant
stations, both in the lab and on the earth’s surface. This is
now understood as a consequence of azimuthal variations
of intensity being smooth and seismic stations tending to
be well separated compared to a wavelength. Quantitative
details are provided by Froment et al. (2010), Godin (2009),
and Weaver et al. (2009). In this asymptotic limit, travel
times are largely unaffected and ambient noise direction-
ality is unimportant. While correlations are not identical to
the Green functions, the seismic velocities inferred from
their direct arrivals are valid.

This robustness does not apply, however, to the
amplitudes of the correlation functions. Any program to
examine noise correlation amplitudes in order to infer
attenuations will require a thorough understanding of the
effect of noise directionality. Correlation amplitudes are
also affected by site amplification factors, detector gain,
and wave focusing. A program to retrieve attenuation will
be challenging but the payoffs are potentially large. A
successful retrieval of attenuation will necessarily also
retrieve site factors and noise directionality, with
implications for detecting the scattering that may have
affected the directionality and determining the site
factors relevant to strong ground motion (Prieto and
Beroza, 2008) in earthquakes. It is towards this goal that
this work is directed. For simplicity, we will confine our
attention, for the present, to 2D scalar wave systems
without focusing (wavespeed is homogeneous) and
without scattering, and to cases in which there are linear
arrays of detectors.

Prieto and Beroza (2008) and Prieto et al. (2009)
suggested that azimuthal and regional averages (at fixed
detector separation r) of frequency-domain normalized
correlations (‘‘coherency’’) can be compared to Bessel
functions Jo(vr/c) times a decaying exponential exp(�ar).
From this comparison, (average) wavespeed c and
(average) attenuation a may be extracted. The particular
genius of this approach is that it obviates concerns over
noise directionality; the azimuthal average renders the
ambient field effectively isotropic. It is also conjectured
that such averaging mitigates the effects of focusing and
defocusing. That this correlation ought look like a Bessel
function Jo is well established (Aki, 1957). That deviations
from a Bessel function ought be ascribable to a factor
exp(�ar) is less clear. Inasmuch as attenuation manifests
as a complex wavespeed c, the quantity Hr Jo(vr/c) does
not diminish with r like exp(�ar). It is readily seen, e.g. by
plotting it or analyzing its asymptotic form at large r, that
it increases like a hyperbolic cosine or sine. It is only the
causal Green function Ho(vr/c) that decays in a manner
similar to exp(�ar)/Hr. There is a further concern that
wavespeed c may vary with direction due to material
anisotropy, or with position. An azimuthal and spatial
average would correspondingly incur a spurious attenua-
tion due to phase cancellations unrelated to anelasticity or
scattering. Comparison of coherency with a theoretical
form like Jo(vr/c) exp(�ar) is, in this author’s opinion,
problematic.

Cupillard and Capdeville (2010) considered the recov-
ery of attenuation from correlations as obtained from
numerical simulations of noisy wave fields. They found,
for the case of uniformly distributed noise sources (and
in accord with theorems saying that such noise field
correlations ought be precisely the Green function), that
both geometric and intrinsic attenuation could be
recovered. This was the case regardless of whether or
not one-bit preprocessing was applied. They also
presented numerical simulation data for the case in
which the sources were distributed over a finite area
patch, and for which recovering attenuation was more
difficult.

As an alternative approach to retrieving amplitudes and
attenuation for general noise source distributions, we here
start with the theoretical form that correlation takes in a
two-dimensional wave field composed of diffuse attenu-
ating plane waves having a smoothly varying noise
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directionality, or ‘‘ponderosity’’, B(u) (Weaver, 2011). The
amplitude of the narrow-band correlation’s ray arrival
from site i to site j is

Xi! j ¼ sis jBi n̂i! j

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pc=v jri

!
� r j

!
j

q
exp � jð

Z ri

!

r j

! adx jÞ

(1)

where the si are the site factors at the detectors (assumed
scalar and local), and B is the intensity of the ambient wave
field at site i in the direction n̂ towards site j. This arrival
amplitude X decays geometrically and exponentially. The X

differs from the amplitudes in the Green function by the
presence of (not a priori known) prefactors B and site
factors s. As indicated above and discussed by Weaver et al.
(2009) and Weaver (2011), the prefactor is merely the
noise intensity B in the on-strike direction. Corrections to
this due to non-uniform ponderosity are negligible in the
asymptotic limit that the ponderosity is smooth and the
detector separations are large compared to a wavelength
(Weaver, 2011). We therefore neglect such corrections
here. Attenuation a in the above includes both scattering
and anelasticity.

Additional influences on X may include focusing and
defocusing of the ambient wavefield due to inhomogeneity
of wavespeed. Here we neglect those effects and corre-
spondingly confine the numerical examples to the case of
spatially constant wave speed.

It is desired to retrieve information on a, and by
implication also on B and s, from measurements of the X.
This may be impossible if B is not constrained. But as
discussed by Weaver (2011), B is not arbitrary; it varies in
space and direction as governed by a radiative transfer
equation (Ryzhik et al., 1996; Turner and Weaver, 1994) or
RTE:

n̂ � ~rB ~r; n̂
� �

þ 2a ~rð ÞB ~r; n̂
� �

¼ 1

2p

I
p n̂; n̂

0
;~r

� �
B ~r; n̂

0
� �

dn̂
0

þ P ~r; n̂
� �

(2)

Ponderosity B is thus interpretable as ‘specific intensi-
ty’. It is the density (per direction angle) of diffuse wave
intensity. It depends on direction n̂ and position~r. Here, a
is the same attenuation as in Eq. (1). The left side indicates
that intensity B in a given direction decays with distance
along that direction like exp(�2a distance). It is notewor-
thy that a is responsible not only for the decay of the Green
function and the noise correlation (Eq. (1)), but also for
decay of the diffuse intensity B, and thus the prefactor in
Eq. (1). The right side of Eq. (2) indicates that B is
augmented by sources P. B ~r; n̂

� �
is also augmented by

scattering, with strength p, into direction n̂ from waves at~r
going in direction n̂

0
. For long-period seismology P is

probably zero within the continents. Whether scattering p

is negligible is less clear.
Equations (1) and (2) constitute a starting point for

understanding ray arrival amplitudes, and thus for
retrieval of attenuation and site factors from correlations
of ambient noise. Even within the approximation that
focusing and defocusing are unimportant and that site
factors are scalar and local, inversion from the X to the a
will be non-trivial. Before attempting more general cases,
however, we wish to confirm that this picture is valid by
examining the particular case in which there is a linear
array of sensors, arrayed along a line of direction�n̂. This is
a great simplification, but it is not impractical; dense linear
seismic arrays are not uncommon. In this case, the above
RTE simplifies.

d

dx
Bþ xð Þ þ 2a xð ÞBþ xð Þ ¼ Sþ xð Þ;

d

dx
B� xð Þ � 2a xð ÞB� xð Þ ¼ �S� xð Þ (3)

where x is a coordinate along the linear array. Instead of an
infinite number of directions, there are only two. There are
two intensities of interest, B�, one for each of the two
directions �n̂. Each B varies along the linear array. Each
attenuates exponentially at a rate 2a in its direction of travel,
and is augmented by sources S�. These sources may be
intrinsic (P), or may be due to scattering (p) from other
directions. It is particularly noteworthy that B does not decay
geometrically.

The radiative transfer equation (2) simplifies even
further in the case that S = 0, as would follow if both P and p

vanish. The quantity p represents the scattering of Rayleigh
waves into other Rayleigh waves and may or may not be
important in practice, but for the present purposes we will
assume it to be negligible. Under these conditions, B is
determined entirely by two boundary values and the
attenuation. It is not difficult to show that the theoretical
expression for log X may then be written as a linear
combination of the log s, the log B at the end points of the
array, and the attenuations, thus permitting inversion for
these parameters. That the parameters are over-deter-
mined can be accommodated by least squares minimiza-
tion (if error estimates are available on the measured X) or
singular value decomposition. As such, the inversion is
unique and straightforward.

Given a set of N stations, there are N(N–1)/2 amplitudes
X associated with each of the two directions, N(N–1) in all.
(The auto correlations Xii depend on noise intensity in all
directions, not just the strike direction, and are not useful
for inversion on a linear array). In the absence of effective
sources S within the array, the Xij depend on the two on-
strike intensities at the end sites, the N site factors si and N–
1 attenuations between neighboring sites. Inasmuch as the
X are independent of a uniform rescaling of the s and an
inverse scaling of the B, there are really only N-1
independent site factors. Thus there are 2N parameters
to be fit by N(N–1) data values. The system is over-
determined if N(N–1)> 2N, i.e. if N> 3. As discussed above,
the inversion is a linear process. In the presence of effective
sources p or P, there are 2N–4 additional parameters S to be
fit, so the system is over-determined if N (N–1)> 4N–4, i.e.
N> 4. That inversion is not linear. (Alternatively one could
formulate the linear inversion of Eq. (1) without (3) in
terms of N–1 attenuations and 2N–2 individual values of B,
and N–1 independent site factors s, and afterwards infer
the S). In either case arrival amplitudes X between pairs in a
sufficiently long array will suffice to specify all parameters
of interest.
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Fig. 1. Sketch of the 271� 271 region on which diffuse wave field was

simulated. Gaussian noise sources were distributed uniformly in angle over

a ring of radius 115 and unit width. The thickness in the figure represents

the source intensity (3 + cos(u + p/4))2. Thus the noise field is not isotropic.

The locations of the six receiver stations (numbered 1 through 6 from left to

right with interstation spacing of 27 units) are indicated by the dots.

Fig. 1. Croquis de la région sur laquelle un champ d’ondes diffuses a été

simulé. Les sources de bruit Gaussien ont été distribuées sur un anneau de

diamètre 230 dont l’épaisseur de la figure représente l’intensité de la

source (3 + cos(u + p/4))2. Ainsi, le champ de bruit n’est pas isotrope. Les

emplacements des six stations de réception (numérotés de 1 à 6 de

gauche à droite, avec un espacement interstation de 27) sont indiqués par

des points.
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2. Numerical experiments

Numerical simulations in support of the proposed
approach are carried out on a discrete 271� 271 mesh
representing a square two-dimensional domain. The
wave equation is solved using central differences with
time step dt:

ctþdt
~r � 2ct

~r þct�dt
~r

dt2
þs~r

ctþdt
~r �ct�dt

~r

2dt
þ 4ct

~r �
X

ct
~r
0 ¼ f t

~r

(4)

where the vector index~r indicates a site of the 271� 271
mesh (~r may be represented by an ordered pair of integers,
each between 1 and 271), f is a time- and space-dependent
forcing, and s represents a spatially varying anelasticity.
The sum is over the four nearest neighbor sites ~r

0
to ~r.

In the absence of forcing (f = 0) and with constant
anelasticity s, the difference equations (4) admit plane
wave solutions:

ct
~r ¼ exp ivtð Þexp �i~k �~r

� �
(5)

with anisotropic dispersion relation:

� 2� 2cos vdtð Þ½ �=dt2 þ issin vdtð Þ=dt

þ 4� 2cos kxð Þ � 2cos ky

� �
¼ 0 (6)

For small k, i.e. long wavelengths and low frequencies,
and negligible anelasticity, this is approximately
v2 ¼ k2

x þ k2
y , corresponding to an isotropic medium with

unit wavespeed.
The chief interest here will be in waves in the x-

direction (such that ky = 0) with frequency specified by a
band pass filter in the vicinity of v � 2p/10. In the limit of
small dt, the dispersion relation becomes

v2 � isv ¼ 2� 2cos kxð Þ (7)

At this frequency kx is 0.6391 (wavelength 2p/kx is 9.831
mesh spacings); group velocity vg = dv/dk is 0.9493. In the
simulations discussed below s is a constant in the interior of
the mesh, at a value of 4/271. Thus Imv is 0.0074 and
attenuation a = Imv/vg = 0.0078 nepers per mesh spacing.

The domain is shown in Fig. 1 where the dark ring (of
diameter 230 mesh spacings) represents the positions of
the broadband Gaussian noise sources f. The sources are
distributed uniformly in angle, at a fixed distance of 115
from the central point of the mesh. The thickness of the
ring in the figure is a representation of the relative
strengths of the sources (not the positions of the sources).
The discrete dots indicate six receiver stations in a linear
array. Attenuation is set high on the edges of the domain, to
eliminate edge reflections. No scattering is included (p = 0).
There are no sources within the array either (P = 0), so S = 0.

In order to compare with seismic scales, it is convenient
to identify one time unit of the simulation (3.3 time steps
dt) with one second. Assuming a seismic speed of �3 km/
sec, one identifies the mesh spacings as 3 km, such that the
source ring has a diameter of 700 km and the station
separations are 81 km. The simulation is run for 225 time
steps of dt = 0.3 s each, thus a scaled duration of four
months. Fig. 2 shows a grey-scale snapshot of the wave
field at a typical instant of time, with positive c in black
and negative c in white. The received signal at each of the
six stations was correlated with that at each of the others,
filtered into a band centered on a period of 10 s (i.e. 33.3
time steps dt), stacked in the usual manner, and plotted. At
this frequency, the station separation is 2.7 wavelengths.
The specified attenuation corresponds to a seismic Q of 43.
A typical stack is shown in Fig. 3.

3. Extraction of attenuation from the correlations

Amplitudes X are extracted from correlation waveforms
like those of Fig. 3 as the root mean square (rms) of the
correlation over a period from 10 s before the theoretical
ray arrival time to 10 s after (20 s corresponds to the
inverse bandwidth i.e. the duration of the filtered
autocorrelations). While unnecessary in the present
simulations as dispersion is weak, in principle the
amplitude of a ray arrival ought be identified with its
rms, not its peak value. Following Eq. (1), (and taking all
s = 1) the average attenuation along the linear array can be
retrieved from a fit of the log of the geometrically-
corrected amplitudes vs distance (Fig. 4). The results agree
with the known value of 0.0078 nepers/mesh spacing. The
vertical offsets of different fitted lines are due to different
noise intensity at different originating stations. The RTE (3)
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Fig. 2. Snapshot of the simulation domain at a typical instant in time. The

high intensity near the sources is evident, as is the high attenuation on the

edges and modest attenuation across the interior. The simulation is

broadband (a band pass filter is applied to the six records before

correlation processing), hence the short length scale graininess in places.

Fig. 2. Instantané du domaine de la simulation dans un instant typique.

La forte intensité près des sources est évidente, comme l’est l’atténuation

importante sur les bords, ou l’atténuation modeste à l’intérieur. La

simulation est à large bande (un filtre bande de transition est appliqué

aux six signaux avant traitement de corrélation), d’où la graininess de

courte longueur d’onde sur l’image.
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Fig. 3. Stack of correlation waveforms between station 6 (the rightmost

in Fig. 1) and the five others (from top to bottom are 6–5, . . ., 6–1,

respectively). Temporal asymmetry is a consequence of the on-strike

noise intensities in the two directions being not equal. Amplitude decay is

evident at positive lapse time (propagation in direction from right to left,

i.e., 6!5, . . ., 6!1). It is due to both geometric attenuation and

anelasticity.

Fig. 3. Addition des corrélations entre la station 6 (la plus à droite à la

Fig. 1) et les cinq autres (de haut en bas, 6–5, . . ., 6–1, respectivement).

L’asymétrie temporelle est une conséquence des intensités du bruit, non

égales dans les deux directions. La diminution de l’amplitude est évidente

au temps positif (propagation dirigée de la droite vers la gauche, c’est-à-

dire 6!5, . . ., 6!1). Ceci est dû à la fois à l’atténuation géométrique et à

l’anélasticité.
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Fig. 4. Amplitudes of the left-going rays in the simulations – after

correction for geometrical attenuation – versus interstation distance in

units of mesh spacing. The upper five points (filled circles) correspond to

the amplitudes from station 6 towards all the others. The next set of four

symbols (circles with central dots) corresponds to the amplitudes from

station 5 to stations 4, 3, 2, and 1. Filled squares correspond to the

amplitudes from station 3 to stations 3, 2 and 1, and so forth. Dashed lines

are linear fits (slope in units of nepers/mesh spacing). The known value is

0.0078.

Fig. 4. Amplitudes des rayons de la Fig. 3, allant vers la gauche (après

correction de l’atténuation géométrique) en fonction de la distance

interstations. Les lignes en pointillés sont des ajustements linéaires. La

valeur connue est 0,0078.
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tells us that the intensity B should diminish exponentially
with distance along the array like exp(�2a * distance), but
not geometrically. This prediction is confirmed by exam-
ining the amplitudes of the adjacent pairs (Fig. 5). This
simple numerical simulation demonstrates retrieval of
medium attenuation and noise intensity using the
approach outlined above for the case of uniform site
factors s and no internal sources P or scattering p. In
particular it confirms that the prefactors B are governed by
a radiative transfer equation.

Similar results are obtained using the amplitudes of the
correlations from left to right (for example from station 1
to other stations). One curious observation is that the
amplitudes at negative lapse time in Fig. 2 are nearly
constant. This is, though, consistent with theory; it is a
consequence of geometric and exponential attenuation
and the differences between the right-going noise intensi-
ties B+ at the different stations. The rays at the negative
lapse time of Fig. 3 are 5!6, . . ., 1!6. The amplitudes are
Bi

+ exp(�a distance)/sqrt(distance), where i is 5, 4, 3, 2 or
1, respectively. According to Eq. (3), Bi

+ varies like exp(+2a
distance). The net effect is exp(+a distance) divided by the
square root of distance, which is roughly constant.

4. Simultaneous inversion for attenuation, site factors,
and incident intensity

The above straight line fits are illustrative, but fits to
linear functions of distance like those of Figs. 4 and 5 are
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Fig. 5. The left-most data points of Fig. 4, i.e. the offsets between the lines,

corresponding to the left-going intensities B at stations 2 through 6, are

seen to diminish with distance across the array like exp(�2a * distance

along array), as predicted by the radiative transfer equation. The solid line

is a best fit.

Fig. 5. Les points les plus à gauche de la Fig. 4 correspondant à des

intensités B qui vont à gauche dans les stations de 2 à 6, diminuent avec la

distance au travers du réseau comme exp (�2a distance), tel que le prédit

l’équation de transfert radiatif. La ligne continue est le meilleur

ajustement.
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both more restrictive than necessary and less restrictive
than they could be. They are overly restrictive in that a
straight line is appropriate only for identical site factors s

and attenuation that is constant across the array. They are
insufficiently restrictive in that separate fits for different
originating stations (the four straight lines of Fig. 4), and
for right-going and left-going waves, do not constrain the
attenuation to be only a function of position~r. To illustrate
a more general retrieval, the full set of all 30 amplitudes X

was inverted by singular value decomposition for the B at
the ends of the arrays, the site factors, and the interstation
attenuations, twelve parameters in all. (The S were
assumed to be zero).

Equation (3) was put in a form that represents the (log
of the) B� at each of the stations as linear functions of the five
interstation attenuations

R xiþ1
xi

adx
� �

and the (log of) B+ at the
left end and the (log of) B� at the right end. Similarly Eq. (1)
was put in a form representing the (logs of the) Xij jxi� xjj1/2 as
linear functions of the log s, the log B, and the five interstation
attenuations. Combining these, one represents the (thirty
distinct) log Xij jxi� xjj1/2 as linear functions of the (six) log s,
the (five) interstation attenuations and the (two) end
intensities B�. The sum of the log s was set to zero by
absorbing an unknown scaling into the B. The resulting set of
30 linear equations in twelve parameters was pseudo-
inverted by singular value decomposition, essentially a
linear least squares procedure with uniform weighting.

This inversion procedure does not assume equal site
factors s or uniform attenuation, nevertheless each site
factor was correctly retrieved to within 2% of its known
value (unity), and each interstation attenuation was
correctly retrieved to within 10% of its known value

0:211 ¼
R xiþ1

xi
adx ¼ 0:0078� 27

� �
. The inversion demon-

strates recovery of independent site factors and indepen-
dent interstation attenuations from correlations amongst a
linear array of stations (for the case in which there are no
sources S internal to the array). It thus endorses Eqs. (1–3)
and correspondingly endorses the theoretical basis for
retrieval of site factors and attenuations and specific
intensities B in more general circumstances.

5. The effect of one-bit preprocessing

To reduce the influence of earthquake signals and to
enhance the strength and bandwidth of the ambient noise
correlations, ambient noise correlation studies have
commonly applied data preprocessing that includes
temporal normalization and spectral whitening. Lacking
this, days of high noise intensity can dominate the
averages and reduce the effective record length far below
the nominal months. Lacking this, a record of months may
be dominated by a few earthquakes and represent more
the correlations of signals from a few point sources than a
diffuse field. Common methods of temporal normalization
include one-bit (Larose et al., 2004) and normalization
using a running average. See Benson et al. (2007) for tests
on preprocessing techniques. These data processing
methods have been demonstrated to be highly effective
at accelerating the convergence of the correlations and
improving their signal-to-noise ratios.

However, such severe nonlinear preprocessing can
cause problems in amplitude retrieval. Studies have shown
that true amplitude may be poorly recovered after one-bit
preprocessing when the ambient noise is not uniform
(Cupillard and Capdeville, 2010; Larose et al., 2007). It has
been suggested that amplitude information would be best
recovered using raw data. The cost on the signal-to-noise
ratio of doing this can be severe, however, and there may
be other approaches.

The effects of one-bit operations on the amplitude of
the correlation are difficult to quantify precisely. Never-
theless, it is clear why one-bit preprocessing distorts the
ray amplitudes. Following the procedures of Cupillard
et al. (2011) using their concepts of incoherent and
coherent intensity and assuming the latter dominates, it is
possible to show that the apparent amplitude of a ray
arrival from site i to j after doing one-bit preprocessing is
proportional to

Xi! j / Bi n̂i! j

� � exp �
R
adx

�� ��� �
~ri �~r j

�� ��1=2
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiI
Bi n̂
� �

dn̂
I

B j n̂
� �

dn̂

s

(8)

(This follows from Cupillard et al. (2011)’s equation 52
after recognizing that the arguments of their arctangents
are large when incoherent noise dominates, and on
recognizing that the coherent and incoherent noise
variances may be identified with the on-strike B andH

B j n̂
� �

dn̂ respectively). The one-bit preprocessing has
removed the site factors and normalized the correlation by
the geometric mean of the total noise at the two stations.
Equation (8) shows that the amplitude at receiver station j

is affected by the usual geometric and exponential
attenuations, but also through a factor of the inverse
square root of the total noise power at j,

H
B j n̂
� �

dn̂
� �� 	�1=2

.
If this factor is spatially constant, the relative values of the
X are unaffected and attenuation ought be retrievable;
such was reported by Cupillard and Capdeville (2010). If
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Fig. 6. Amplitude decay in the correlations obtained after one-bit

preprocessing of the simulated data. This figure should be compared

with Fig. 4 from band-passed raw data without one-bit preprocessing.

Symbols are defined as in Fig. 4.

Fig. 6. Atténuation d’amplitude dans les corrélations obtenues après

prétraitement one-bit des données simulées. On doit comparer cette

figure avec la Fig. 4, à partir de données brutes de la bande de

transmission sans prétraitement one-bit. Les symboles sont les mêmes

que sur la Fig. 4.
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incoherent noise is highly inhomogeneous, this factor can
vary substantially with j, and the influence of attenuation
exp �

R
adx

�� ��� �
on X will be obscured. If, for example,

propagation away from a dominant source of the noise is
analyzed, i.e, away from the coast in a long-period seismic
application, the total noise at j,

H
B j n̂
� �

dn̂, will decay with
distance from the coast approximately like exp(–
2a� distance). The denominator in Eq. (8) will therefore
diminish approximately like exp(–a� distance), and the
apparent attenuation will be close to zero. If propagation
towards the coast is analyzed, attenuation will seem to be
up to twice what it ought to be. One-bit preprocessing will
distort the apparent attenuation.

This is confirmed by applying one-bit preprocessing to
the above simulated data, and seeing that attenuation is
not correctly recovered (Fig. 6). The fitted slope, 0.0062, is
smaller than the known value 0.0078. This is consistent
with the above argument that apparent attenuation is
smaller when analyzing propagation away from the
chief source of the noise (intensity is stronger on the
right side of Fig. 1). Fig. 6 also shows that the quality of
the straight line fits is poor and that the prefactors B n̂

� �
do not diminish with distance along the direction n̂ like
exp(–2a� distance) as required by the RTE.

One-bit preprocessing is attractive because it mitigates
the effects of transients and accelerates convergence when
noise intensity varies in time. It is simple but it is not
always necessary. In order to retain rapid convergence
amidst time-varying noise intensity, while preserving the
relative gains at different stations, a different procedure is
suggested here. If noise intensity varies slowly, more
slowly than the propagation time across the array, it
should suffice to do narrow-band temporal ‘‘flattening’’, in
which every station’s band-limited signal is normalized by
a running average of the array’s total band-limited energy.
Thus each station is treated equally so that relative
amplitudes are preserved. Furthermore, one day of high
noise will not dominate a month’s averaging. In practice
this recipe may call for rejection of periods of high
amplitude transient seismic activity.

To demonstrate the procedure, new numerical simu-
lations were conducted using the same parameters as
above but with noise intensity increased by a factor of 16
for 1/16th of the time. Correlations were then generated
using both the raw data and the flattened data. The
relative amplitudes X of the arrivals were essentially the
same for these two cases (and the same as originally)
showing that apparent attenuation is not affected by
flattening. In fact, the correlations from the flattening
were identical to those of the original case using
temporally-constant noise. The signal-to-noise ratio
SNR, after preprocessing by flattening was also the same
as originally. However, the SNR in the correlations of the
raw data was degraded. Temporal flattening equalized
the variable noise source, leading to faster convergence
with all information being used, while (unlike one-bit
preprocessing as in Fig. 6) preserving relative signal
amplitudes between stations.

6. Summary

Disentangling the many factors affecting correlation
amplitudes in order to reliably recover attenuation is
challenging. It has been argued here that one key factor,
noise intensity, or ponderosity, may be modeled by a
radiative transfer equation and that this recognition is
sufficiently constraining that we may hope to fit measured
correlation amplitudes and retrieve attenuation, at least
for the linear detector arrays considered here. Further
work will require extending these ideas to two-dimen-
sional arrays, to the case in which noise intensity is
augmented by sources P and scattering p, to incorporating
knowledge of confidence levels on the correlation ampli-
tudes (essentially the SNR) so as to properly weight least
squares minimization, and to the effects of focusing and
defocusing due to spatially varying wavespeed.
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