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Abstract

Three inversion methods are presented that use near-source seismic waveforms to
image rupture properties of large earthquakes. In each case, the objective is to solve for a
detailed time and space description of rupture by minimizing the misfit between observed
and predicted ground motion. The first two inversion methods are both linear and solved
by non-negative least squares but the slip function is treated differently. The third method
is nonlinear, assumes the slip amplitude distribution in advance, and solves for rupture
propagation characteristics by reducing seismogram residuals iteratively; the assumed slip
distribution is obtained from seismograms or geodetic measurements of co-seismic surface
deformation.

Models of the 1992 My, 7.3 Landers, California earthquake obtained with each method
are compared. A fundamental trade-off between slip amplitude and rupture time exists in
near-source seismograms and degrades model resolution; however, this trade-off is
reduced when slip is resolved independently by geodetic measurements or surface fault
offset. The models of the Landers earthquake reveal a highly variable distribution of slip
amplitude, which is likely related to pre-existing strength or stress heterogeneity in the
fault zone, and there is evidence that the rupture front slows down before and accelerates
through high-slip regions. Slip terminated in the middle of a relatively straight fault
segment, indicating that something other than segmentation was responsible for stopping
rupture. The models are similar away from the hypocenter; near the hypocenter, either the
slip duration is relatively long, or rupture growth is facilitated by dynamic stresses
resulting from an immediate foreshock.

The greatest source of error in near-source waveform inversions results from an
idealized theoretical description of the forward problem. An alternative approach is to
define the forward problem empirically. Empirical Green's functions are derived from
aftershock seismograms of the 1989 My 6.9 Loma Prieta, California earthquake; the
accuracy of the models are assessed with cross-validation.

Broadband seismograms recorded next to earthquakes are analyzed to discern dynamic
properties of stress release during earthquake nucleation. Evidence is presented that most
earthquakes begin slowly, characterized by a weak initial P-wave, and the duration of this

weak beginning increases with earthquake size.
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Chapter 1 — Introduction

This thesis addresses the fundamental question of how to determine properties of
an earthquake from measurements of ground motion at the Earth's surface. More accurate
images of earthquake rupture will lead to an improved understanding of earthquake source
mechanics and the many factors that control rupture nucleation, growth, and termination.
A more accurate theory will address such questions as: What controls where an
earthquake begins? What factors influence the propagation and termination of rupture?
What are the temporal characteristics of the slip function, how are they related to the slip
amplitude, and how do they influence strong ground motion? Do areas of large slip
remain fixed over subsequent earthquake repetitions or are they transient dynamic features?
Why do aftershocks occur and are their locations predictable? Are there measurable
properties at the beginning of an earthquake that may influence its eventual size? These
questions have obvious societal significance; with increased urbanization occurring near
fault zones and seismogenic areas, their relevance will certainly increase.

Ground motion observations customarily take the form of seismograms (time
series) but also include permanent distortions of the Earth's surface measured with
geodetic methods. The foremost goal of this thesis is to use these observations to obtain a
complete space and time description of the faulting process. This is accomplished by
minimizing the misfit between the observed data and data predicted by a model using
inverse theory. Solutions to the inverse problem depend strongly on the forward physical
theory that relates (maps) the model space to the data space. Every inverse problem is
different: in some cases, for example, the paramount issue is reconciling inconsistent data,
in others it is matching measurements that contain large variance. In the present problem,
the foremost concern is the error in the forward theory (the Green's functions) because this
error most significantly degrades the solution accuracy. More accurate fault models can be
obtained either by reduction of this error or a better characterization of it; reduction of the
error makes the forward problem more deterministic, characterization of the error provides

a basis for more appropriate covariance weighting that is used in the inversions.
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A complementary objective is to improve the method used to derive earthquake
models from near-source seismograms. Near-source recordings provide better model
resolution than regional or teleseismic seismograms because they are less attenuated and
contain shorter wavelengths, and because the forward problem is more accurate at
comparable frequencies. Additionally, near-source Green's functions vary more strongly
with position on the fault than do their regional and teleseismic analogs. The strategy
consists of identifying and reducing error in the forward problem, and recognizing
solution attributes caused by the inversion method (artifacts). The forward problem is
examined to identify sources of error and determine the frequency band over which
modeling assumptions are most valid, and when necessary, sensitivity tests with synthetic
data are employed to identify artifacts of the model parameterization and inversion method.
The inversions are carried out in the time domain because that currently provides the most
direct link between the model and data (more complete knowledge of the covariance may
require frequency domain inversions in the future). Although time-domain least-squares
methods have been used to examine many earthquakes in the last decade, not much
attention has been directed toward quantifying errors or estimating model variance.

A second goal of the thesis is to use the methods to detect properties of specific
earthquakes. The My, 7.3 1992 Landers, California event is scrutinized in the greatest
detail because of the extraordinary collection of ground motion observations for it. The
Landers earthquake was noteworthy for many reasons: it was the largest earthquake in
Southern California in forty years (a period that saw critical improvements in
instrumentation); the combined seismic and geodetic data set is more complete and of
higher quality than for any other earthquake of its size (and four sites that recorded the
mainshock also recorded the aftershock sequence); the rupture broke through the ground
surface for over 70 km; and it triggered numerous smaller earthquakes at distances in
excess of 1000 km — an occurrence without known precedent. Because the event occurred
in the sparsely populated Mojave Desert, there was only one death and the societal impact
was small for an earthquake of its size.

Studying earthquakes is fundamentally an observational science. The observations
are most often based on seismograms that describe time-dependent ground motion. In
many cases, inferences about an earthquake can be made by examination of a raw
seismogram, but this is difficult if there are multiple observations, or if the wave

propagation is complex. In this case it is necessary to model the seismograms by means of
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an appropriate theory. When inverse theory is applied, the data is fit well but the model is
nonunique. It is therefore useful to evaluate the solution stability with the aid of sensitivity
tests; models are difficult to interpret without an estimate of their variance.

This thesis refers to approximately thirty-one publications that use strong-motion
seismograms to infer rupture characteristics of eighteen separate earthquakes (Table 1.1).
Almost all of them occurred in California where strong motion networks operated by the
U.S. Geological Survey (USGS) and the California Strong Motion Instrumentation
Program (CSMIP) combine to provide coverage for most seismogenic areas in the state.
The methods used to study these earthquakes have many features in common. They all
use strong-motion seismograms recorded close to the earthquake to derive models of slip
intensity on the fault surface. The propagation of rupture and the slip-velocity time
function (rise time) are treated in various ways; however, all methods use time-domain
waveforms as data and solve the inverse problem by minimizing a 2-norm of the residuals
(least squares). Each study uses some regularization, most commonly in the form of
spatial smoothing that minimizes either slip gradient or slip curvature on the fault.

It is not surprising that the techniques used in these studies are similar. Following
the pioneering work of Olson and Apsel [1982] and Hartzell and Heaton [1983], the same
generic algorithm has been applied by others, essentially unchanged, to examine
subsequent earthquakes. The method uses non-negative least squares to solve a linear
system for the slip amplitude on planar faults. Rupture time is prescribed a priori and a
range of rupture velocities are evaluated. In some cases, the slip-velocity time function is
constant over the entire fault, in others this assumption is relaxed and each element of the
fault is allowed to rupture repeatedly (for example, three to six times) in adjacent time
windows.

Although researchers have applied this approach to many earthquakes, it has been
slow to evolve. There are three notable exceptions. First, Mendez et al. [1990] introduced
a frequency domain inversion technique that was used to infer the spatial and temporal
evolution of the 1985 My, 8.0 Michoacan rupture [Mendez and Anderson, 1991]. A
similar formulism was adopted by Cotton and Campillo [1995] in their analysis of the
Landers earthquake. Second, Beroza and Spudich [1988] solved for slip and rupture time
simultaneously using a linearized (iterative) inversion. They were forced to grapple with a
strong trade-off between slip amplitude and rupture time much more directly than the

previous linear method. The third development was to combine seismic and geodetic
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Table 1.1. Earthquakes with Near-Source Observations
Location' Date M, Area Dur V, Seis  Geo Reference
(km?) (s)  (km/s) #)
Michoacan, 19Sep 1985 8.1 18000 42 2.6 4 P Mendoza and
Mexico Hartzell [1989]
Valparaiso, 3Mar 1985 8.0 16000 54 NA 3 P Somerville et al.
Chile [1991]
Akita-Oki, 26 May 1983 7.7 2700 45 2.2 7 NA  Fukuyama and
Japan Irikura [1986]
Landers 28Jun 1992 7.3 920 24 2.5 20 G Cohee and
Beroza [1994a]
Borah Peak, 280ct1983 7.3 800 NA 2.9 0 G Mendoza and
Idaho Hartzell [1988];
Du et al. [1992]
Kobe, Japan 17 Jan 1995 6.9 960 12 2.8 17 G Wald [1995]
Loma Prieta 18 Oct 1989 6.9 440 6 2.8 16 G Beroza [1991]
Irpinia, Italy 23Nov 1980 6.9 460 13 2.0 7 N Cocco and Pacor
[1993]
Naganoken- 14 Sep 1984 6.8 220 3 2.7 4 NA  Takeo [1987]
Seibu, Japan
Northridge 17 Jan 1994 6.7 280 7 2.8 26 G Wald and
Heaton [1994b]
Superstition 24 Nov 1987 6.6 200 10 2.4 10 N  Frankel and
Hills Wennerberg
[1989]
San Fernando 9 Feb 1971 6.5 170 6 2.8 5 P Heaton [1982]
Imperial 150ct 1979 6.5 340 16 2.6 15 N Hartzell and
Valley Heaton [1983]
Morgan Hill 24 Apr 1984 6.2 260 7 2.8 5 P Beroza and
Hpudzch [1988]
N. Palm 8Jul 1986 6.0 220 4 3.0 9 rtzell [1989]
Springs
Coyote Lake 6 Aug 1979 5.9 40 2 2.8 6 N  Liuand
Helmberger
[1983]
Whittier 10ct 1987 5.9 100 2 2.5 17 N  Hartzell and
Narrows Tida [1990]
Sierra Madre 28 Jun 1991 5.6 10 2 2.7 14 N Wald [1992]
Parkfield 28 Jun 1966 5.5 400 12 2.7 5 G Beroza [1989];

Segall and Du
1993]

t California unless noted otherwise
Dur earthquake duration
V, rupture velocity

Seis number of near-source seismic stations
Geo co-seismic geodetic data: G-good, P-poor, N-none, NA-unknown
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observations to constrain the rupture models. This approach, first advanced by Heaton
[1982], has the advantage of decreasing the aforementioned trade-off because the geodetic
data are sensitive only to slip amplitude and have no temporal dependence.

Until the 1992 Landers earthquake, implementation of this latter approach was
prevented by the poor quality of existing geodetic data and the paucity of pre-event
surveys. Wald and Heaton [1994a] used geodetic displacements together with strong-
motion and teleseismic waveforms in the first comprehensive treatment of a large
earthquake (Landers) and obtained a rupture model that simultaneously fit the three data
types. They were forced to contend with novel difficulties, most notably how to weight
each data type in a simultaneous inversion. Ideally, the relative weight of each data type
would be inversely proportional to its variance, but since earthquakes are not repeatable
phenomena, it is notoriously difficult to quantify error in strong-motion and teleseismic
seismograms. The full data covariance was available for the geodetic measurements but
was not used by Wald and Heaton [1994a].

Without information about error in the seismograms, the most conservative
strategy is to separate completely common influences in the geodetic and seismic data:
geodetic data are used to find the slip model and seismograms are used to determine the
rupture propagation. Notwithstanding the effort required, it is possible in theory to
estimate error in the seismograms if aftershock recordings are available at the same stations
at which the mainshock was recorded. Spudich and Archuleta [1987] described the

procedure as follows:

To our knowledge, no one has yet attempted to estimate these errors and carry
them along as uncertainty estimates in subsequent calculations. Estimation of
these errors would be relatively easy if microearthquake recordings were available
in the study region. One could simply examine the spectrum of the difference
between the observed microearthquake seismograms and synthetic seismograms
calculated in the identical source-observer geometry for point dislocations. For
frequencies below the microearthquake's corner frequency, the synthetic point-
dislocation seismograms should match the observed seismograms. Probably it
would be observed that the difference between the observed and synthetic
seismogram spectra would increase as a function of frequency, corresponding to
our progressively less accurate knowledge of earth structure on decreasing length
scales. If quantitative measurements of these discrepancies were available, they
could be used to estimate uncertainties in both forward modeling and inverse
modeling of earthquake seismograms.
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This approach is only possible when aftershock recordings are made at the same
seismometer sites that recorded the mainshock. In the Landers earthquake, four
TERRAscope stations recorded the mainshock and the entire aftershock sequence on the
same broadband seismometer. In this thesis, these aftershock recordings are used to find
the best one-dimensional (1D) seismic velocity structure and to estimate the misfit
associated with theoretical point-source Green's functions. If aftershock seismograms had
been available for all stations used in the inversion, it would have been possible to
determine the associated covariance more formally.

There are many reasons why better models of earthquake rupture are sought-after.
Strong ground motion at the surface is strongly connected to the details of rupture — an
improved understanding of this relationship would permit building design codes to
represent expected ground motions more faithfully.

There is a spatial correlation between areas of high slip amplitude and low
aftershock activity. The tendency for areas of high slip during mainshocks to be deficient
in aftershocks has been noted by a number of investigators [e.g., Beroza and Spudich,
1988; Mendoza and Hartzell, 1988] and is of obvious importance in understanding the
cause of slip heterogeneity and the relationship between mainshocks and aftershocks. One
interpretation is that aftershocks are driven by the stress change induced by the mainshock;
however, in the Loma Prieta earthquake Beroza and Zoback [1993] showed that the sense
of aftershock slip did not act in the direction of the mainshock traction change for the
majority of the aftershocks. A better understanding of earthquake interaction — both
between mainshocks and aftershocks, and mainshocks and subsequent large earthquakes —
could help mitigate seismic hazard.

Seismic observations require that kinematic dislocation models contain
heterogeneous slip amplitude and complex rupture propagation. These models do not take
into account the stresses generated during rupture and their implications for the faulting
process, which are fundamental to an understanding of earthquake physics. Theoretical
and numerical approaches based on spontaneous, dynamic shear-crack models suggest that
these complex rupture processes arise from non-uniform stress and fault strength [e.g.,
Mikumo, 1992]. It is possible to use kinematic solutions to constrain dynamic theories,
but only if the models are accurate; small features in the kinematic models can have a
significant effect on the dynamic solutions. To date, there has been little effort to reconcile

these two complementary views of the rupture process (partly because the resolution of the
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kinematic models is generally too poor to warrant the considerable computational effort),
although there are some noteworthy exceptions [e.g., Quin, 1990; Mikumo and Miyatake,
1993; Mikumo and Miyatake, 1995].

Another motivation for obtaining better rupture models is to understand the causes
of rupture heterogeneity and the implications for the variability and time-dependence of far-
field earthquake triggering [Hill et al., 1993]. More accurate rupture models will not
explain far-field triggering, but they will improve modeling of the dynamic stresses
radiated from earthquakes. The seismicity triggered at great distances following the
Landers earthquake, for which the static stress change was far smaller than the tidal
stresses, provides further evidence for a more complex mechanism of earthquake
interaction than that explained by current theory. One explanation for the observations is
that the large transient stress changes in the dynamic field weaken faults as they propagate
through them. If such stress changes (fractions of a MPa) can trigger seismicity at a great
distance following the Landers earthquake, it is reasonable to assume that they can also
trigger aftershocks since the stresses experienced in the near-source region where
aftershocks occur are on the order of the stress drop (at least several MPa).

In the Landers earthquake, the slip propagates across discontinuous fault segments
with a negligible effect on either the slip amplitude or rupture velocity. This suggests that
fault segmentation, at least in its geologic expression at the Earth's surface, is not a reliable
indicator of the characteristic size of future earthquakes. Additionally, slip on the Camp
Rock-Emerson segment terminated in the middle of a relatively straight fault segment,
indicating that something other than segmentation was responsible for stopping the
rupture. Better fault models will improve our understanding of the importance of fault
segmentation on the progression and termination of rupture.

Although there remains considerable room for improvement in the methods used to
extract rupture models from recorded ground motion, it is possible that in the short-term,
higher quality and more plentiful data will overshadow theoretical improvements. Seismic
instrumentation is evolving rapidly and seismometers that record ground motion over
many decades of frequency (e.g., the STS-2) are routinely used in modern deployments.
New techniques are being developed to utilize more efficiently this explosion in the
quantity of waveforms, and these advances in data collection are paralleled with progress
in methods that use the data. In any problem, additional data is most useful when the

errors in it are understood and the covariance can be determined. In the earthquake
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problem, this requires either that recording systems have sufficient dynamic range to
capture both mainshock and aftershocks, or that co-located seismometers are deployed
following large events. Table 1.1 summarizes all earthquakes to date for which realistic
space-time descriptions of faulting have been obtained from near-source data. Methods

used in these studies are still in their infancy, yet a few lessons have been learned:

» Site instrumentation with sufficient dynamic range to record the mainshock
and aftershocks are necessary to facilitate the use of empirical Green's
functions and quantify the theory covariance.

* Geodetic measurements of surface deformation are useful for constraining co-
seismic slip in mainshocks and reducing the trade-off between slip amplitude
and rupture time in the seismic wavefield.

* The sources of error in finite-fault earthquake models need to be better
understood.

In Chapter 2, I present two time-domain inversion methods and perform sensitivity
tests with synthetic waveforms computed for a simulated Landers earthquake. The
strengths and weaknesses of each method are evaluated and discussed. In Chapter 3, I
apply the two methods to recordings of the Landers earthquake to image the spatial
variation of slip amplitude, the propagation of the rupture front, and the duration of slip at
each point on the fault, while making assumptions about the fault geometry, the surface
displacement, and the slip direction.

Chapter 4 presents results obtained from an approach that, in the absence of the full
covariance, exploits the complementary nature of seismic and geodetic observations: the
slip model is determined from geodetic measurements with known covariance and the
rupture propagation and slip history are derived from seismograms. I apply this approach
using seismic and geodetic measurements of the Landers earthquake. This partitioned
inversion method yields more reliable rupture propagation models than those based only
on seismic data.

The results in Chapter 4 are encouraging, but it is important to recognize that the
validity of the rupture model is strongly dependent on the accuracy of the slip model.
Errors in the geodetic forward problem and other unaccounted-for sources of error will
map into slip model errors; however, it is reassuring that most features of the slip models

derived independently from seismic and geodetic data are very similar.
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Chapter 5 explores a method for obtaining more accurate seismic Green's functions
for the My, 6.9 1989 Loma Prieta, California earthquake through the interpolation of
aftershock recordings (termed empirical Green's functions). The purpose of the chapter is
to test a method at Loma Prieta that could have utility in the analysis of future earthquakes.
The quality of the solutions are evaluated using cross-validation statistics. A singular
value decomposition (SVD) is applied to filter the data in a manner that enhances the site-
effect and yields an improved cross-validation result. Although the overall success of this
implementation at Loma Prieta is disappointing, it does provide insight into how
aftershock deployments can be improved to enhance the usefulness of empirical Green's
functions.

Finally, Chapter 6 presents a study of the dynamic stress release during earthquake
initiation using high-dynamic-range, broadband seismograms recorded at close distance
for earthquakes over a wide range of magnitude. The inversion method is similar to that
used in earlier chapters, but the context is different — the earthquake is assumed to be a
point source, each station is treated separately, and the broadband seismogram is
unfiltered. This strategy is permitted by the use of recordings made at very close distance

(within one source-depth) where theoretical Green's functions are extremely simple.
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Abstract

In this chapter I compare two time-domain inversion methods that have been
widely applied to the problem of modeling earthquake rupture using strong-motion
seismograms. In the multi-window method each point on the fault is allowed to
rupture multiple times; this allows flexibility in the rupture time and hence the
rupture velocity. Variations in the slip function are accommodated by variations in
the slip amplitude in each time-window. The single-window method assumes that
each point on the fault ruptures only once when the rupture front passes.
Variations in slip amplitude are allowed and variations in rupture velocity are
accommodated by allowing the rupture time to vary. Because the multi-window
method allows greater flexibility it has the potential to describe a wider range of
faulting behavior; however, with this increased flexibility comes an increase in
non-uniqueness and the solutions are comparatively less stable. I demonstrate this
trait using synthetic data for a test model of the My, 7.3 1992 Landers, California,
earthquake. The two approaches yield similar fits to the synthetic data with
different seismic moments indicating that the moment is constrained poorly by
strong-motion data alone. Recovery of the input slip amplitude distribution is
similar using either approach but important differences exist in the rupture
propagation models. The single-window method does a better job of recovering
the true moment and the average rupture velocity. The multi-window method is
preferable when rise time is strongly variable but tends to overestimate the
moment. Both methods work well when the rise time is constant or short
compared to the periods modeled. Neither approach can recover the temporal
details of rupture propagation unless the distribution of slip amplitude is
constrained by independent data.
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2.1 Introduction

Inverse methods have been applied to estimate the rupture time and slip amplitude
using near-source (< 200 km) strong motion seismograms for many well-recorded
earthquakes [Olson and Apsel, 1982; Hartzell and Heaton 1983; Fukuyama and Irikura,
1986; Takeo, 1987; Beroza and Spudich, 1988; Hartzell, 1989; Mendez and Luco, 1990;
Mendez and Anderson, 1991; Cocco and Pacor, 1993]. The common goal of this research
is to determine the complete space and time history of coseismic slip on an assumed planar
fault surface or surfaces by matching recorded seismograms with theoretical seismograms.
The kinematic rupture models derived in this way provide important constraints on the
dynamics of earthquake rupture [Heaton, 1990; Scholz, 1990]. Moreover, an accurate
description of faulting aids in understanding the strong ground motion, leading to an
enhanced ability to design structures that withstand shaking in future earthquakes.

Despite much research in this area there remain important discrepancies between
rupture models of the same earthquake published by different authors. It is typically
difficult to assess the relative accuracy of the models. For the most part, past studies have
concentrated on deriving a model that fits the strong motion data without much emphasis
on assessing the solution stability or spatial resolution. The use of standard inverse
methods makes it easy to obtain a solution that matches the data acceptably well; the greater
challenge lies in estimating the reliability. Some solution discrepancies result from
differences in the portion or bandwidth of the wavefield used in the inversion. An under-
appreciated source of discrepancies result from the different model parameterizations and
inversion methods. It is important to understand the origin of the model differences
because they often have more to do with assumptions made about the model than about the
earthquake.

Examples of recent earthquakes about which authors using similar strong-motion
data have found dissimilar solutions include the 1979 Imperial Valley earthquake [Olson
and Apsel, 1982; Hartzell and Heaton, 1983], the 1984 Morgan Hill earthquake [Hartzell
and Heaton, 1986; Beroza and Spudich, 1988], the 1987 Superstition Hills earthquake
[Frankel and Wennerberg, 1989; Wald et al., 1990], the 1989 Loma Prieta earthquake
[Beroza, 1991; Steidl et al., 1991; and Wald et al., 1991], and the 1993 Landers
earthquake [Cohee and Beroza, 1994a; Wald and Heaton, 1994a). Authors often cite these



Chapter 2 — Finite-fault inversion using near-source seismograms 12

discrepancies as indicative of the amount of uncertainty in rupture models obtained from
strong-motion data.

For example, Frankel [1992] suggested in the case of the 1987 Superstition Hills
earthquake that differences in the data and data weighting were the cause of solution
discrepancies, noting, in particular, that without applying some weighting, close stations
with larger seismogram amplitudes dominated the least-squares inversion. In this
example, the model parameterizations and inverse methods were very different (Frankel
and Wennerberg [1989] solved for a line-source using impulsive Green's functions) and it
was not easy for identical data and weighting to be used with each inversion method.
Wald et al. [1991] discussed dissimilarities in the rupture solutions of the 1989 Loma
Prieta earthquake. They speculated that differences in the particular stations used and the
data weighting, and to a lesser extent the Green's functions, might have been responsible
for solution differences; however, they did not assess the relative importance of each or
identify features attributable to different inversion methods.

In this chapter we compare two established time-domain inversion methods using
identical data, weighting, and Green's functions in order to isolate the influence of the
model parameterization and inversion method on the solutions. We conduct sensitivity
tests using synthetic data computed for a hypothetical 1992 Landers, California,
earthquake with known source properties; the synthetic test model includes variations in
slip amplitude, rupture velocity, and slip duration (displacement rise time). We finally
determine how well the two methods recover the known rupture model in the presence of
realistic noise.

Although the multi-window method contains greater flexibility and has the potential
to describe fully the wide range of faulting behavior included in the synthetic test case, the
results are less stable and much of the noise is incorrectly mapped into source properties.
The multi-window method works best when the rise time is strongly variable, but it also
systematically overestimates the seismic moment. The single-window method does a
better job of recovering the input moment and the average rupture velocity. Neither
method can reliably recover detailed rupture time variations unless the slip model is known

independently (e.g., from geodetic data).
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2.2 Rupture Model Parameterization

The two inverse methods compared in this chapter have been described in previous
studies [Hartzell, 1989; Cohee and Beroza, 1994a). In each case, the forward problem
consists of representing a continuous planar fault by numerous point sources (Figure 2.1).
The contribution from each point source to each seismometer is described by a theoretical
Green's function computed for a layered Earth model. The objective of the inverse
modeling is to find the strength and timing of each point source. The most important
difference between the two methods is how the rupture propagation is represented. In the
multi-window approach, each element of the fault is allowed to rupture some fixed number
of times. This approach was introduced by Olson and Apsel [1982] and has been used in
many later studies. By allowing each element to rupture more than once, the multi-
window model has the flexibility to accommodate variations in both the rupture velocity
and the duration of the slip function (Figure 2.2); however, the number of unknowns
increases with the addition of each time window.

In the single-window parameterization, each fault element ruptures once, but
rupture time variations are allowed by perturbing a constant-rupture-velocity starting model
[Fukuyama and Irikura, 1986, Takeo, 1987; Beroza and Spudich, 1988; Hartzell and lida,
1990]. The perturbations are determined in a separate, linearized inversion. In this latter
approach, the rise time is assumed to be constant over the entire fault and is optimized by
finding the value which produces the best overall fit to the data.

Both methods improve the data fit by allowing the rupture time to vary. This
improved fit is not achieved without expense: the model dimension is larger and the
solution has greater variance. An advantage of the single-window method is that it can
accommodate larger variations in rupture time with fewer model parameters because there
are only two model parameters per grid point (slip amplitude and rupture time). An
advantage of the multi-window method is that it allows the source time-function (and the

rise time) to vary across the fault surface.

2.3 Inversion Methods
In the multi-window approach, slip can occur at each point on the fault in a finite
number of subsequent time-windows. The complexity of the slip function (and the size of
the model dimension) increases with the number of prescribed windows. With this

approach it is possible to obtain a variable rupture velocity; the slip can move to earlier or



Chapter 2 — Finite-fault inversion using near-source seismograms 14

— A\

Simulated seismogram at
recording station

Green's functio

Slip time-function

Figure 2.1. Schematic description of the forward problem. Contributions from fault elements
are summed to produce a simulated seismogram at a receiver at the ground surface.
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Figure 2.2. Schematic cartoon showing the single and three time-window rupture
parameterizations. A cross section of a rectangular fault plane is shown at the figure top and is
divided into square fault elements. The rupture propagates from right to left. Below the cross
section, example slip-velocity functions are shown for the jth column of fault elements. The slip-
velocity functions used in this study are triangular and symmetric. The width of the triangle is the
displacement rise time. The linear three time-window method has the flexibility to distribute
unevenly the slip across the three windows. With this method, the rupture time is defined as the
slip-weighted temporal centroid for each element. The centroid is shown schematically. In the
single time-window method each element slips once, and the timing of the slip is optimized with
a nonlinear inversion. In this cartoon both the multi-window and the nonlinear model show a delay
of the 2,j element, but differ in the rupture time of the 5,j element.
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later windows for different areas of the fault plane. The slip amplitude for all windows is
found simultaneously in one large inversion.

In the single-window method each point is allowed to slip just once when the
rupture front passes. A variable rupture velocity model is then found in a separate,
nonlinear inversion (the slip amplitude is held fixed) that is linearized using a Taylor series
expansion and the current model estimate. In the multi-window approach, modest
deviations in rupture velocity are allowed and the rise-time varies within the time spanned
by the windows.

The linear inversions have the familiar form Am =d. The kernel AisaNx M
matrix that relates slip at each point on the fault to the recorded seismograms, m is the
model vector of slip amplitude with length M, and d is the data vector of length N.
Seismograms for the three components of motion form d. Theoretical seismograms
representing the contribution from each fault element comprise the columns of A. The size
of N is the product of the number of stations, number of components, and the number of
points in each seismogram. In the single-window inversion, the length of m is simply the
number of fault elements. In the multi-window approach, the length of m is the number
of elements multiplied by the number of windows. In the linearized inversion for rupture
time, each element slips once and we solve for the optimal rupture time of each element
assuming a fixed slip model, which increases the dimension of m from M to 2M.

The three-window method solves for the slip distribution and rupture time in one
step. The possible rupture time at each element is limited to the particular time-windows
used, thus the rupture velocity of the first window is an upper bound on the overall rupture
velocity. Likewise, variation in the time function is limited to the assumed window
spacing (see Figure 2.2). In contrast, the single time-window result is obtained using a
constant rupture velocity and a separate, linearized inversion is used to optimize the rupture
time of each element. This latter approach is similar to the linearized inversion of Beroza
and Spudich [1988] and the nonlinear inversion of Hartzell [1989], except they both
solved for slip amplitude and rupture time simultaneously. The difficulty with a
simultaneous inversion is that it is unclear how to weight two groups of unknowns that
have different physical dimensions (i.e., time and distance). There is a strong trade-off
between slip amplitude and rupture time and it is difficult to solve this problem without

other information to constrain the solution. One technique that shows promise is to use
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geodetic measurements to determine the static slip distribution and seismic data to
determine the rupture propagation — this approach is the subject of Chapter 4.

Unfortunately, it is difficult to quantify the sources of error in the forward problem
and determine the appropriate covariance. Error in the Green's functions is different for
each station and each component of motion. If they are available, aftershocks recorded at
the same sites can be used to quantify the error for specific propagation paths — if sufficient
recordings exist, it is theoretically possible to construct a full covariance matrix (Section
4.4). In the absence of such data, the weighting is somewhat arbitrary.

One approach is to use no covariance, but then the largest amplitude seismograms
dominate the solution. An alternative approach is to normalize each seismogram by its
power and solve the system RAm = Rd, with the N x N matrix R = diag[1/poweri],
where power is the power of the ith seismogram. The problem with this choice of R is
that small amplitude vertical motions have equal weight as horizontal motions that contain
the transverse shear waves for which the Green's functions are relatively more accurate;
the P-SV wavefield is more sensitive to local velocity heterogeneity and, in particular, the
relative partitioning of energy on the radial and vertical components is strongly dependent
on the velocity of the surface layer.

For the present purpose of comparing the two inverse methods, the three
components of motion at each station are normalized by the total power at that station; each
station has equal weight and the contribution of the vertical component is minimized. This
weighting matrix is defined as R = diag[1/powers?@], where powers?@ is the summed
power of the three components at each station.

The size of the model space in each of the parameterizations is large and it is
necessary to stabilize the solution by regularization. An example of this stability problem
is found in Hartzell [1989]. He used a multi-window approach and found that the
earthquake moment increased with the addition of each time window. One technique for
overcoming this particular problem is to append a moment minimization constraint
[Hartzell and Heaton, 1983]. A more widely-used regularization method is to require the
solution to be spatially smooth. In earthquake source inversions, this is accomplished by
simultaneously minimizing either the first or second spatial derivative of the model.

We apply three types of regularization to the problem. We append a smoothing
constraint that minimizes the slip amplitude gradient (first derivative) of m. This

augmented linear system is written
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where D is the smoothing matrix and &, is a scalar that weights D. There is a predictable
trade-off between model roughness, defined as lIDmlI?, and data fit — a rougher model fits
the data better but is less stable. In some circumstances, independent observations of
surface displacement, s, can be used to estimate the best smoothing weight [Cohee and
Beroza, 1994a]; s can also be used as a constraint in the inversion. Finally, a
homogeneous boundary condition is prescribed at the bottom of the fault plane, which is

meant to enforce a zero slip constraint at the base of the seismogenic zone. This system is

written
RA Rd
&D \m =] 0 |, (2.2)
1T 18
vB 0

When the boundary conditions are enforced y = &,/2, and 7 is determined by trial
and error such that the model slip amplitudes at the ground surface match the observations

within a prescribed tolerance, T:
N ) P!
(Z[obsi ~(pred,,m)] ) <T (2.3)
i=1

where obs; is the average observed slip for element i and pred; the prediction for model m
(the error is assumed to be the same for each element). For both the multi- and single-
window inversion, the system is solved with the non-negative least squares algorithm of
Lawson and Hanson [1974].

Recall that the single-window approach assumes a constant rupture velocity. To
optimize the rupture time we use a Newton-Raphson linearization [Press et al., 1989] and
iteratively solve for perturbations, dm, to the starting rupture time model, m. The
strength of this approach is that the fit to data is improved by relatively small changes (< 2
s) in the rupture time of each fault element; however, this approach only finds the

minimum norm that is closest to the starting model, which may not be the global
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minimum. The linearized system is written g(m+dm) = g(m) + Jdm, where J is the
Jacobian matrix of partial derivatives relating change in the rupture time model to each of

the residual seismograms,

98

J
and g(m) is the functional that yields synthetic seismograms for a particular rupture and
slip model. The Jacobian matrix is computed using a fourth-order central difference
operator with error proportional to (At)*, where At is the sampling interval of the data.

This linearized system is written

(EJ6m = (Ej (2.5)
gD 0

where the residual r = d - g(m) and the first-derivative smoothing operator D (weighted
by €1) smoothes the perturbation vector dm. We iterate on the system m, = my_; + dm,
until a convergence criterion is met: the data is fit to the prescribed tolerance. At each
iteration the system is solved using either singular value decomposition (SVD) [Press et
al., 1989] or a simultaneous iterative reconstruction technique (SIRT) algorithm [Olson,
1987]. SVD finds the true least-squares inverse but is computationally expensive. SIRT
is approximate but computationally efficient since it does not require a matrix inverse. We
use the SIRT algorithm to evaluate the large range of starting models and smoothing

weights and verify the important results using the SVD.

2.4 Theoretical Green's Functions
The inversion methods described in the preceding section require that the model is
connected to the data by a physical theory, or forward model. In the present problem, the
data are time-varying ground motions measured at the surface (seismograms), and the
discrete approximation to the continuous model is represented by point sources that, when
summed together, approximate the complete time and space history of faulting. There are

various approaches to computing ground motion from a point-source dislocation in an
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idealized Earth structure, and each has unique attributes. There is no one method that is
clearly superior in all circumstances.

Three important considerations in choosing a method for calculating theoretical
seismograms are the source-receiver distance, the frequency band of interest, and the
dimension of the Earth model. These considerations are not independent. For example,
larger source-receiver distances imply lower frequencies because of attenuation.
Moreover, small-scale structural heterogeneity has a negligible influence on long-period
waves, and large-scale heterogeneity is only relevant at large distances.

Strong-motion accelerometers are designed to record large-amplitude high-
frequency motions. Typically, the recorded acceleration is integrated to velocity or
displacement to produce a less oscillatory waveform with more deterministic phase. Each
integration divides the original spectra by the complex angular frequency —iw ; in simple
terms, the frequency content of the power spectra is lowered with each integration. Since
energy travels fewer wavelengths at shorter distances, the impact of attenuation is minimal
at near-source distances, and high-frequencies (up to 5 Hz) remain even after integration.
Therefore, we need a theory accurate to high frequencies; however, this in turn, requires
that the velocity structure be known at small scale-lengths. Methods of determining Earth
properties at small scale-lengths are complicated and usually require active-source
experiments, which is beyond the scope of this research. In most near-source earthquake
studies there are a few one-dimensional (1D) models available; in rare circumstances 2D
models exist for specific paths. Because of the tremendous effort required in acquiring
them, high-resolution 3D velocity models are presently only developed for isolated areas
of commercial (oil and gas) interest.

A well-known development in theoretical seismology is the analytical expression
for the displacement u from a point dislocation source in a whole-space. For an isotropic

homogeneous medium, the equation of motion is expressed by the Stokes-Navier equation

ﬁ=£+a2V(V-u)—ﬁ2Vx(qu), (2.6)

where o and B are P- and S-wave velocities, and f is a body force. Taking the

divergence of equation 2.6, we get the curl-free component (the P wave)



Chapter 2 — Finite-fault inversion using near-source seismograms 21
J’ f . 0
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and if we take the curl of equation 2.6, we get the divergence-free component (the S wave)

2

gr_z_(wu)wx%wzvqwu). 28)

Both equation 2.7 and equation 2.8 have the general form of the wave equation

—-=c*V*u. (2.9

Lame's theorem exploits the similarity of equation 2.9 to the scalar Helmholtz equation
Viu+k’u=0 (2.10)

(in the frequency domain) to show, after some lengthy manipulation, that the displacement
in the ith direction from a delta function force in the jth direction can be written (in the

time-domain) as

! r
ui=47rpa2 Y, ( /a) 47rp[32 ( -7.7;) (t—/ﬂ)
+47;'p1ar2 (3'}’,’}’] )( /Cl) 47L’pﬁr( 37’:7’, ( /ﬂ) (2.11)
s (11,8 )R(1= 7)o (17, =8 )R 1= 75)

vi=—t=—— (2.12)
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[Aki and Richards, chapter 4, 1980]. In equation 2.11, 6(t— Va) is the delta function
acting at retarded time %x’ H(t - Va) is the step function with value of unity at times

greater than %6 , and R(t - %x) is the ramp function whose first non-zero value is at time
.

Since the first two terms of equation 2.11 decay the most slowly with distance, r,
they dominate at large r and are termed the far-field P- and S-wave contributions.
Likewise, the third and fourth terms with r~ decay are intermediate-field terms and the
fifth and six terms with ™ dependence are the near-field contributions. According to
common nomenclature, the intermediate- and near-field terms are combined into a single

"near-field" term; then equation 2.11 can be reduced to

. 1
" amparr Y 8(t=4) T anppr (6, = 77,) S(t_yﬁ) (2.13)

1 Y,
+ pr— (3}/,.yj - 6””2 TR(t- 1)dr

[Aki and Richards, chapter 4, 1980]. There are important features to recognize in equation
2.13. The near-field term decays rapidly with increasing r and is negligible for almost all
recorded seismic data. Consequently, most methods for calculating seismograms do not
include the near-field contribution. Since strong-motion seismograms are recorded close
to the source, the near-field contribution cannot be ignored. An examination of equation
2.13 reveals that all static displacement is contained in the near-field term. The importance
of including the near-field in the theoretical Green's functions for the Landers earthquake
is demonstrated by the significant displacements identified in geodetic measurements made
at comparable near-source distances (Section 4.2).

One approach for calculating Green's functions is the propagator-matrix formulism
introduced by Haskell [1964]. This method yields the complete response for a stack of
horizontally-stratified isotropic layers, but is increasingly expensive for higher frequencies
that are required for modeling strong-motion seismograms. Wang and Herrmann [1980]
made various improvements to Haskell's [1964] method in their frequency-
wavenumber/reflectivity algorithm. In both methods, the ground motion spectrum at
distance r, f(w,r), is expressed as an integral of the product of a frequency-wavenumber
kernel f(k,®) and the nth order Bessel function:
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flo,n =] f(k.w)J,(kr)dk. (2.14)

The evaluation of this integral proves to be problematic because f(k,®) has numerous

poles and branch cuts along the real wavenumber axis. This impediment generated further
research into improving the quadrature method, most of it focused on decreasing the
computational requirements; in the present study, we use the algorithm developed by
Saikia [1994]. As a result of these numerical improvements and the contemporaneous
advancements in modern computing, it is now feasible to compute high-frequency
theoretical seismograms that include the near-field term. In contrast to seismograms
computed with ray-theory methods, these so-called complete seismograms include the
entire response from the layered velocity model, in particular, the reverberated energy that
leads to the regional surface waves Lg and Rg, which are especially important for shallow
sources, and the whispering gallery phase Pnl, which is most relevant at regional distances
and high frequencies.

Even a precise method can produce inaccurate results — although the theoretical
method is precise, the theoretical seismograms are only as good as the velocity model used
to compute them. The propagator-matrix approach assumes an 1D input model, which is a
gross simplification of the true earth; however, in practice, it is rare to have models of
greater complexity available in most regions. Enough important differences typically exist
among available 1D models that it is necessary to determine the accuracy of each to find the
best model. One way this can be done is by modeling aftershock seismograms, which is
discussed in Section 3.3. An alternative approach is to interpolate Green's functions from
empirical recordings in the identical source-receiver geometry — this is the subject of
Chapter 5.

2.5 Synthetic Test Case for the Landers Earthquake

2.5.1 Landers Earthquake Geometry
This comparison of the single- and multi-window inversion methods uses the
strong-motion station locations, frequency band, and fault geometry of the My, 7.3 1992
Landers, California, earthquake. The Landers mainshock was the largest earthquake to

occur in Southern California since the My, 7.7 1952 Kern County earthquake. The slip
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propagated unilaterally from south to north, producing right-lateral offsets (< 6 m) at the
ground surface for over 70 km on a sequence of vertical strike-slip faults. The assumed
location of the fault in this study is based on surface displacements and aftershock
locations. The fault is represented by three segments extending from the surface to 18 km
depth. The location of each segment is shown in Figure 2.3: the southern segment is 27
km long, the middle segment is 30 km long, and the northern segment is 45 km long. The
segments are further subdivided into a total of 204 (3x3 km?) elements. The rupture
initiates at a depth of 4.5 km.

The fault geometry and the seismometer sites are described in Section 3.2.
Eighteen three-component stations are used; they provide good azimuthal coverage of the
fault zone (Figure 2.3). It is important to recognize that in the following tests there is no
modeling error because the artificial data are calculated with the same geometry and

Green's functions that are used in the inversion.

2.5.2 Model Parameterization

The use of the multi-window rupture model makes it simple to add additional time
windows; d remains unchanged. Columns in A are repeated (with a time shift) for each
additional window and the size of the m is increased accordingly. The window is delayed
by a fixed amount (in this study 2 s) from a reference rupture time. The only deterrent to
using many windows is the practical limitation of increased memory storage and the added
solution instability that results from the larger model dimension.

The addition of multiple windows permits variable rupture velocity by allowing
slip to occur in adjacent time windows. There are no smoothing constraints relating slip in
adjacent windows. If required by the data, the fault element may repeatedly rupture and
stop, or have an extended duration. The degree of rise-time complexity depends on the
duration and number of windows used; in the following tests there are three. Up to six
windows have been used with this method [Wald and Heaton, 1994a], resulting in a
model with many free parameters.

Alternatively, in the single window approach, the rupture time of each element is
prescribed and the best-fitting variable-slip model is found. We use a rise-time duration of
2 s; however, because of the low frequencies used, any rise time of 3 s or less yields
similar results. With both inversion methods, the model is not sensitive to differences in

rise time less than 3 s because the data were filtered to remove short-period (<4 s) energy.
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Figure 2.3. Map of the 18 low-gain, accelerometer stations used in this study. The stations are
identified by three-letter code. The mainshock rupture zone is indicated by symbols that show
the surface projection of each fault element. The fault elements form three linear fault segments,
representing (from south to north) the Johnson Valley, Homestead Valley, and Camp Rock-
Emerson faults. The four TERRAscope stations are PAS, SVD, PFO, and GSC.
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2.5.3 Inversion Results Using Synthetic Data
We compute synthetic data for a hypothetical rupture using the Landers fault
geometry, add uncorrelated white noise of comparable amplitude to that found when
modeling aftershocks, and image the slip distribution and rupture time using each
inversion method. For a known model m, we calculate synthetic data d by computing the

forward problem Ami=d, and then solving the inverse problem

RA Rd
eED|Im = | o (2.15)
YB 0
for m. Next, we add the noise vector e and solve
RA Rd+e
gD |m = 0 (2.16)
vB 0

for m. We perform this test using each inversion method and compare the solution m to
the input model m to assess the spatial resolution and fidelity of each inversion method.
The slip distribution for the test case is shown in Figure 2.4a (fop ). The synthetic model
has right-lateral displacement of either 0, 2, or 4 m, as shown by the 1 m contours. Note
that the three rectangular fault segments are projected onto a single fault plane. The rupture
velocity varies along the length of the fault: it is 2.2 km/s on the southern (Johnson
Valley) segment, increases to 2.8 km/s on the middle (Homestead Valley) segment, and
decreases to 2.5 km/s on the northern (Camp Rock-Emerson) segment. Additionally, each
slip patch has a rise time duration of either 2, 3, or 4 s, which is labeled in Figure 2.4a
(top ). This rupture time model does not contain small-scale perturbations that may occur
in earthquake rupture — in this test we only seek to reproduce the average rupture of each
segment and the rise time variability. The rupture time for the input model is contoured in
Figure 2.4b (top).

This strategy of using sensitivity tests for resolution analysis is discussed in
Beroza and Spudich [1988] and Cocco and Pacor [1993] for the earthquake rupture
problem, and in Spakman and Nolet [1988] for the delay-time tomography problem. The

ability of each inversion method to recover the known slip and rupture model is indicative
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of the resolution expected with the observed data and realistic noise levels. Artifacts of
each method evident with synthetic data are also likely to exist with the recorded data. The
range of rupture velocity, rise time, and slip amplitude in the synthetic model is intended to
be representative of the variation found in the actual Landers earthquake. The rupture
velocity varies from 2.2 to 2.8 km/s; rise times are 2 to 4 s, which is reasonable given the
width of the rupture surface [Day, 1982]; and the slip is spatially heterogeneous, with
large patches of displacement (asperities) separated by areas of zero slip.

The inversion results using the synthetic data without noise are shown in Figure
2.4. The second and third panels show the slip amplitude distribution obtained using the
single-window method and constant rupture velocities of 2.3 and 2.4 km/s. The fit to the
data is nearly identical using either rupture velocity but the slip distribution is different.
The single-window model does a good job of recovering the input slip when the rise time
is short (2 to 3 s). When the rise time is longer (0 and 45 km along strike), more of the
slip is mislocated in neighboring elements. This is a result of the inability of the single-
window method to reproduce the longer rise times. Instead, the method prefers a slower
rupture velocity and tends to put greater weight on shallow elements that have lower
frequency Green's functions [Cohee and Beroza, 1994a]. The fourth and fifth panels
show the two best-fitting solutions of the three-window approach, which differ only in the
rupture velocity used to establish the timing of the first window. In both solutions, the
multi-window approach recovers the variable rise time and rupture velocity by distributing
slip across the three windows. The slip amplitude solution locates the slip correctly for the
long rise-time (4 s) asperities but tends to mislocate the slip in the shorter rise-time
patches. In general, the corresponding rupture time model is a more accurate
representation of the input model than a constant propagation velocity, but some artifacts
are introduced to reconcile the mislocated slip (for example, between 5 and 15 km along
strike).

One practical problem encountered with the three time-window approach is that the
fit to seismograms is nearly constant over a wide range of rupture velocity (using the time
of the first window). This is expected because slip is simply shifted to later windows
when a higher rupture velocity is used. Even though the slip distributions are quite similar
for the two cases shown, the rupture propagation models demonstrate important
differences. These differences using noise-free data demonstrate a best-case scenario with

this method for this data. Thus, without additional information, it appears
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unlikely that fine details of the propagation can be accurately recovered using the strong-
motion data alone.
We quantify the fit to the data using a weighted measure of the variance reduction

(Aoz) between the model and data defined as

-1
AG? = [1-(d-gm)Cid-gm)) 0 2.17)
d'c;ld

where Cq!1 represents the weighting (inverse data covariance) matrix and g(m) is the
model prediction. In the noise-free test case the fit to seismograms is better using the three
time-window inversion (A02= 92% at 2.8 km/s), compared to that obtained using the
single-window inversion (A0'2= 73% at 2.4 km/s). In all preferred solutions the seismic
moment is overestimated by 10% to 20%.

To make the test more realistic, Gaussian white noise is added to the synthetic data.
The power spectra of the noise is flat and is filtered identically as the data. The amplitude
of noise is adjusted to mimic the level of variance reduction (approximately 30%) found in
modeling the Landers mainshock and aftershock seismograms [Cohee and Beroza,
1994a]. Note that the absolute level of variance reduction depends strongly on the
passband and is much higher at lower frequencies. Synthetic displacement seismograms
computed using the input model shown in Figure 2.4 (fop) are plotted in Figure 2.5 for
three representative strong-motion stations. The solid seismograms are the noise-free
synthetic data and the dashed seismograms are with noise added.

The inversion results using the noisy data are shown in Figure 2.6. Again, the one
time-window approach recovers the average rupture velocity (2.3 to 2.4 km/s). Recovery
of the input slip distribution is degraded slightly relative to the noise-free solution for those
asperities with a long (4 s) rise time. The moment is again overestimated by 20%.
Nevertheless, even in the presence of noise, the patches with 2 and 3 s rise times are
accurately located. With noise added, the seismogram variance reduction is reduced from
73% to 28%. In contrast, the results using the three-window method have changed
considerably from the noise-free case. The slip is less accurately located for all slip
patches. In particular, the long rise-time patches now have considerable slip in
neighboring elements and the asperity edges are poorly defined. Compared with the one-

window solutions, there is substantially more slip (and seismic moment) in these models,
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suggesting that the increased number of free parameters allows the inversion to fit the
uncorrelated noise with erroneous slip. As a result, the total moment is overestimated by
about 50%. This overestimation of moment was also found by Hartzell [1989] using the
same multi-window approach — he found the seismic moment increased with the addition
of each successive time window. More importantly, the rupture time solution shows
important differences from the input model; in particular, the propagation of the rupture
front near the hypocenter is dissimilar. The measure of fit to the seismograms is
marginally improved over the one-window model (32% versus 28%).

The estimated seismic moment and fit to seismograms for the synthetic tests are
summarized in Figure 2.7. The top panel shows the moment obtained for a range of
rupture velocities (1.8 to 3.5 km/s) using the one time-window method. The middle panel
shows the moment in each time window using the three-window approach. Note that as
the rupture velocity is increased (in the range from 2.4 to 3.0 km/s), the method places a
greater percentage of moment in the second and third windows. The bottom panel
quantifies the fit to the synthetic data using both inversion methods (solid - one window,
dashed - three windows). The broad peak in the variance reduction using the three-
window method makes it difficult to choose a best average rupture velocity and is
indicative of the degraded stability inherent in the multi-window approach. In contrast, the
single-window method has a peak in variance reduction at 2.3 to 2.4 km/s and a
corresponding seismic moment that is 20% larger than the true moment. The fit to the
synthetic data is plotted in Figure 2.8 for the one-window (2.4 km/s) and three-window
(first window at 2.5 km/s) solutions presented in Figure 2.6. Differences in the visual fit
to the data are subtle; however, close examination suggests the three-window model fits
more of the noise in the seismograms.

Finally, we evaluate the ability of the linearized inversion to recover the rupture
time model using three different assumed slip distributions. The top panel in Figure 2.9 is
again the synthetic (input) rupture time model. The next panel is the solution of the
linearized inversion assuming the true slip distribution and noise-free data. Most features
of the input model are recovered, including the delayed rupture in the fourth slip patch at
45 km along strike, and the different rupture velocity on each fault segment. When the
noise is added to the data, the solution is worse but still contains the principal features of
the input model (third panel). In practice, we do not know the true slip distribution and

instead use the estimate from the linear one-window inversion at a rupture velocity of 2.4
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SVD A=62-76 km PFO A=39-130km GSC A=62-133km

80s

Figure 2.5. Synthetic displacement seismograms from hypothetical Landers earthquake shown in
Figure 2.4 (top) for three seismic stations at representative azimuths (see Figure 2.3). The
synthetic data is shown with and without noise added. In each case, the seismograms are filtered
the same as the recorded data (see text). The level of noise was chosen to be representative
of the uncorrelated noise present in the Landers mainshock seismograms.
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km/s. This result is shown using both noise-free and noisy synthetic data assuming the
two slip models shown in Figures 2.4 and 2.6. Both of these inversions recover the true
rupture variation to some extent; however, the fit to the seismograms is only slightly
improved. This suggests that some of the variations in rupture time were mapped as
mislocated slip in the previous linear inversion. Most importantly, if the correct slip
distribution is used, it is possible to recover the input rupture time variation. This suggests
that if an accurate slip model can be obtained from independent data (e.g., geodetic), than
propagation details can be imaged with greater accuracy. In Chapter 4 this approach is
applied to the Landers earthquake by using geodetic measurements to establish the
coseismic slip distribution.

In summary, the tests with synthetic data have revealed important features
attributable to each model parameterization and inversion method in the Landers earthquake
geometry: (1) the single-window method tends to overestimate the seismic moment by
about 20%, while the multi-window method overestimates the moment by up to 60%; (2)
the multi-window parameterization of rupture propagation works well with noise-free data,
but is unstable when the data contain noise; (3) the single-window approach is a simpler
parameterization of the rupture propagation and consequently can only recover the average
rupture time; (4) the gross slip distribution is recovered using either method; (5) without
noise in the data, the single-window approach does better at accurately locating the slip
when rise time is more uniform and the multi-window approach does better when rise time
is strongly variable; (6) with noise in the data, the single window approach more precisely
locates the distribution of slip amplitude; and (7) the nonlinear inversion for rupture time
works well only if the assumed slip distribution is a good approximation of the true slip
distribution. Having performed these sensitivity tests using the Landers fault geometry,
station distribution, and data passband, we are now in a much better position to carry out

the same inversions on the real Landers earthquake data and to interpret the results.
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Figure 2.7. The seismic moment obtained for each average rupture velocity is shown in the top
bar chart for the one time-window model (the input moment is normalized to unity). The moment
in each time-window is shown for the three-window model in the middle bar chart (rupture velocity
is determined by the time of the first window). The bottom panel shows the seismogram
variance reduction (AO'Z) as a function of rupture velocity using each method.
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Figure 2.8. Fit to synthetic data seismograms with noise added for two inversion solutions shown
in Figure 2.6. The solid seismograms are the synthetic data, the dashed seismograms are from
the one time-window model (v = 2.4 km/s), and the gray seismograms are from the three time-
window model (first window at 2.5 km/s). The variance reduction for each station component is
listed to the right of the corresponding seismograms for the one-window solution. The average
weighted variance reduction is 27.6% using one window, and 31.8% using three windows.
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Figure 2.9. Four results of the linearized inversion for rupture time. The results differ only in the
slip distribution assumed in each case, and whether or not noise was added to the synthetic
data. The top panel shows the input rupture time model, which is the same as that shown in
Figs. 3 and 5 (top right). The second and third panels assume the true slip model, and use a
starting rupture model with a constant rupture velocity. The fourth and fifth panels also use a
starting rupture model with a constant rupture velocity, but assume the slip distribution model
that was determined in the corresponding linear one-window inversion.
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Conclusions

In this chapter we compared two different approaches for recovering the rupture
behavior of a fault using strong-motion seismograms. We first examined the properties of
the solutions and their ability to recover a general rupture model in the presence of realistic
noise. The results of the synthetic tests indicate both methods have strengths and
weaknesses. One strength of the single-window method is that it appears to recover the
seismic moment fairly well; it also recovers the average rupture velocity and variations in
slip amplitude provided the rise time is short relative to the periods used in the analysis.
The weaknesses of the single-window approach are that it does not recover the slip
properly when the rise time is long and it does not recover detailed variations in rupture
velocity. One strength of the multi-window case is that it has the flexibility to locate
displacement correctly in the presence of substantial rise time variability. The weaknesses
of this method are that it tends to overestimate the seismic moment and that, like the single-
window method, it does not reliably recover details of rupture propagation.

It is clear from the comparison of the one- and three-window models that strong-
motion seismograms alone cannot estimate the seismic moment with great precision. In
both cases the fit to the data was nearly identical, yet the moment differed by up to 50%.
In short, strong-motion data is not overwhelmingly sensitive to the moment (compared to
other data), and that moments obtained from strong-motion seismograms are strongly
influenced by the choice of model parameterization and inversion method.

Including other data types to constrain the slip model will reduce the trade-off
between slip amplitude and rupture time that affect solutions based on seismic data alone.
Clearly, including other types of data will improve the accuracy and decrease the model

variance in studies of future earthquakes.



Chapter 3 — Rupture of the 1992 Landers
Earthquake

3.1 Introduction

3.2 The 1992 Landers, California, Earthquake
3.3 Green's Function Accuracy

3.4 Solving for Fault Rupture Behavior

3.5 Inversion Results

Abstract

I use near-source (10 to 164 km) displacement seismograms to image the slip
distribution and rupture history of the 1992 M,, 7.3 Landers, California,
earthquake. Aftershock seismograms from similar distances are modeled to find
the velocity model and frequency range (0.05 to 0.25 Hz) over which theoretical
Green's functions are most accurate, and the measure of fit is used as an upper
bound on theoretical error in the mainshock inversion. I represent the rupture
surface with three planar segments divided into 3x3 km? elements extending from
the surface to 18 km depth and solve for the slip distribution and rupture time
model that minimizes misfit to both recorded seismograms and mapped surface
displacement in a least-squares sense. I investigate two faulting models, one with
a uniformly short (< 3 s) rise time everywhere on the fault surface and the other
with a variable rise time (2 to 6 s). Sensitivity tests indicate both fault models
recover similar slip and rupture features but neither is capable of imaging details of
the rise time. For the Landers earthquake, I find an average rupture velocity of 2.5
km/s and use this average for a starting model in a linearized inversion for rupture
time. In our solutions of slip amplitude distribution, the southernmost, Johnson
Valley fault segment has 20% of the total seismic moment (6 to 7x10'° N-m) with
small displacements near the hypocenter; the Homestead Valley segment
contributes half of the moment with the largest slip amplitudes 25 to 35 km
northwest of the hypocenter at 4 to 12 km depth; and the Camp Rock-Emerson
segment contributes 30% of the total moment with the largest slip amplitude 35 to
50 km northwest of the hypocenter in the shallow crust (< 9 km). There is some
evidence that the rupture front is delayed as it encounters high-slip regions
suggesting that prior to the mainshock these areas were further from failure due to
greater strength excess.
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3.1 Introduction

Discrete inverse methods are routinely applied to estimate earthquake parameters in
the point-source approximation [Dziewonski et al., 1981; Nabelek, 1984, Ekstrom, 1987].
However, for large earthquakes or earthquakes recorded in the near-source region, the
effects of fault finiteness are important and provide an opportunity to learn more about the
details of rupture. Near-source seismograms are particularly valuable for imaging the
rupture time and slip amplitude distributions of large earthquakes. These data are also less
sensitive to velocity and attenuation heterogeneity in the source-receiver path than
teleseismic recordings at comparable frequencies and thus the Green's functions used to
relate model to data are more accurate.

Methods for estimating rupture time and slip amplitude distributions using near-
source seismograms have been developed and applied to many earthquakes in California
[Olson and Apsel, 1982; Hartzell and Heaton 1983, 1986; Beroza and Spudich, 1988;
Frankel and Wennerberg, 1989; Beroza, 1991; Steidl et al., 1991; Wald et al., 1991].
Similar techniques have also been used to image rupture characteristics of earthquakes in
Japan and elsewhere [Fukuyama and Irikura, 1986; Takeo, 1987; Das and Kostrov, 1990;
Hartzell and Mendoza, 1991; Fukuyama and Mikumo, 1993]. In these studies the spatial
and temporal distribution of slip on a planar rupture surface is estimated by modeling
seismic waveforms. Propagation of the rupture front is modeled in several different ways.
In some studies each element of the fault is allowed to rupture a number of times
repeatedly [Olson and Apsel, 1982; Hartzell and Heaton , 1983, 1986; Wald et al., 1991,
Wald and Heaton, 1994a). In others, each element ruptures only once, but rupture time
variations are allowed by perturbation of a constant-rupture-velocity starting model
[Beroza and Spudich, 1988; Hartzell and Iida, 1990]. Both approaches improve the fit to
data by allowing some rupture time-variation, but they also increase the model space
dimension (number of variables) and decrease the solution uniqueness.

The June 28, 1992, Landers earthquake provided an exceptional opportunity to
apply inverse methods to a major strike-slip earthquake. Early studies of the Landers
earthquake indicated a unilateral rupture of roughly 3.0 km/s with two sub-events
separated by about 30 km [Kanamori et al., 1992; Ammon et al., 1993; Campillo and
Archuleta, 1993; Dreger, 1994a]. These subevents were interpreted as being associated

with slip on the Johnson Valley fault near the hypocenter and the Camp Rock-Emerson
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fault to the north, with little slip on the intervening Homestead Valley fault [Hauksson et
al., 1993; Lees and Nicholson, 1993]. This interpretation was corroborated in part by a
gap in the mapped surface slip on the southern portion of the Homestead Valley fault
[Ponti, 1992; Sieh et al., 1993].

Our slip models suggest the Landers earthquake was more complicated than a two-
source event and that there was substantial slip on the Homestead Valley segment. In
other words, we find significant slip on all three major fault segments. Other features of
our source model are i) relatively low slip on the Johnson Valley fault, including the region
near the hypocenter, ii) half of the total seismic moment on the Homestead Valley fault in a
broad region centered near 8 km depth, and iii) peak slip displacements at shallow depth
(<9 km) where the Camp Rock and Emerson faults overlap. In our model of the Landers
earthquake, slip and rupture continue unimpeded through several fault segment
boundaries. This suggests that fault segmentation alone can not be used to anticipate the
size of future earthquakes.

In this paper we use complete point-source seismograms calculated in a one-
dimensional (1D) velocity model to study the Landers earthquake rupture. The theoretical
error in the Green's functions is determined by modeling aftershock seismograms for
events with known source parameters. We parameterize the fault with three segments
comprised of fault elements that slip either once when the rupture front passes, or several
times in adjacent time windows, and explore i) linear inversions for slip given assumed
rupture times, and ii) linearized inversions for rupture time given estimates of the slip
distribution. The separation of the effects of slip amplitude and rupture time variation

facilitates the investigation of their relative importance in fitting the seismograms.

3.2 The 1992 Landers, California, Earthquake

3.2.1 Model Parameterization
The Landers mainshock was the largest earthquake to occur in southern California
since the 1952 My, 7.7 Kern County event. The Landers earthquake started 6 km
southwest of the town of Landers and ruptured northward for 22 s. It produced right-
lateral displacements at the surface for over 70 km on a sequence of right-stepping vertical
faults that form the northward extension of faulting that began approximately two months

earlier in the M, 6.1 Joshua Tree earthquake [Hauksson et al., 1993]. Together with
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previous earthquakes across the Central Mojave, these events ruptured a series of fault
segments that cut across the predominant northwest trending faults in the region
[Hauksson et al., 1993; Nur et al., 1993].

The locations of the fault segments used in our model parameterization are based
on the surface trace of mapped rupture [Sieh et al., 1993; Johnson et al., 1994] and
aftershock locations [Hauksson et al., 1993]. We represent the rupture surface with three
planar segments that extend vertically from the surface to 18 km depth (Figure 3.1). The
high-frequency epicenter, found from arrival times on the short-period Southern California
array, is shown by a star at 34.20°N and 116.43°W [Kanamori et al., 1992; Hauksson et
al., 1993]. In our model, the southern segment of the fault is 27 km long and strikes
354°, the middle segment is 30 km long and strikes 331°, and the northern segment is 45
km long and strikes 322°. These three segments represent the Johnson Valley, Homestead
Valley, and Camp Rock-Emerson faults, respectively [Sieh et al., 1993; Johnson et al.,
1994]. Our representation of the Landers rupture surface as three planar segments is an
idealization for at least two reasons. First, rupture at the surface occurs across shear zones
that are 50 to 200 m wide [Johnson et al., 1994], and second, the Camp Rock and
Emerson are two distinct faults at the surface that are near-parallel and offset by 1 to 2 km;
however, because we use longer period energy (> 4 s) in the analysis, error introduced by
the simplified fault parameterization is small.

The Landers earthquake occurred in the middle of the TERR Ascope array of high-
quality broadband seismometers and triggered numerous low-gain accelerometers in the
near-source region. Initial source parameters were estimated within hours of the origin
time [Kanamori et al., 1992]. The focal mechanism determined from regional P-wave first
motion data indicates almost pure right-lateral strike-slip motion with a dip of 90°
[Hauksson et al., 1993], consistent with rupture of the Johnson Valley segment. The best
point-source double-couple obtained from teleseismic surface waves suggests right-lateral,
strike-slip motion on an almost vertical plane (strike 343°, dip 81°, rake 180°: USGS
CMT) indicating substantial slip on faults that strike more westerly than the Johnson
Valley fault. The mapped surface slip indicates little vertical displacement (< 2 m) at the
surface; vertical displacements vary with position and appear to be mostly influenced by
pre-existing topography and near-surface geology [Sieh et al., 1993; Johnson et al.,
1994].
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Figure 3.1. Map view of Landers region showing mapped faults and the surface projection of
the three planar segments assumed in the mainshock modeling. These three segments
represent the Camp Rock-Emerson, Homestead Valley, and Johnson Valley faults. The location
and geometry of the segments is based on measured displacements at the ground surface and
aftershock locations [see Ponti, 1992; Sieh et al., 1993]. Fault map from Bortugno [1986].
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The cross section of the three fault segments is shown in Figure 3.2. The
hypocenter defines the horizontal origin. In our modeling of the Landers earthquake, we
divide up the three fault segments into 204 total elements each with a dimension of 3x3
km?. For each element we seek the right-lateral slip amplitude and the rupture time. In the
linear inversions for slip amplitude, the rupture time of each element is determined by an
assumed constant rupture velocity. For rupture of any segmented fault, there are many
plausible scenarios for the propagation of rupture from one segment to the next. Initially,
we assume a constant rupture velocity and that the rupture front proceeds smoothly from
one segment to the next. This type of rupture front evolution is shown by the contours of
rupture time in Figure 3.2. Note that in the two regions where the fault segments overlap,
slip occurs simultaneously on the overlapping regions.

We use this simple parameterization to find the best average rupture velocity from a
range of reasonable values, and then in a separate linearized inversion, solve for the
optimal rupture time at each element given the estimated slip model. As an alternative
parameterization, we allow slip at each element to occur in three adjacent time windows, so
both the slip distribution and rupture time variations are solved for simultaneously. In all
models the rupture is assumed to begin at the location determined from high-frequency
recordings, and we adopt a 3 s delay to the published origin time (11:57:34.1 UTC) to
account for the delay between the high frequency origin time and the initiation of
mainshock rupture [Abercrombie and Mori, 1994; Dreger, 1994a]. The separation of
arrival times for the foreshock and mainshock do not show substantial systematic
azimuthal variation, so it appears the mainshock began near the foreshock hypocenter
[Abercrombie and Mori, 1994]. We use a hypocentral depth of 4.5 km [Hauksson et al.,
1993], but other values (2 to 9 km) produce nearly identical solutions. Since the
mainshock displacement recordings have little high frequency energy, they are not

particularly sensitive to the hypocentral depth.

3.2.2 Mainshock Displacement Seismograms
The eighteen near-source, low-gain stations used in this study come from three
sources: TERRAscope [Kanamori et al., 1992], the California Strong Motion
Instrumentation Program [CSMIP, 1992], and the U.S. Geological Survey [Hough et al.,

1993]. The station name, location, and other characteristics are listed in Table 3.1, and
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Figure 3.2. Cross section of the fault segments with 1 s rupture time contours shown using an
average rupture velocity of 2.5 km/s. The dimensions of the segments are given in km.
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their areal distribution is shown in Figure 2.3. The different recording characteristics of
these seismic stations influence several aspects of the modeling effort.

The four TERRAscope sites (GSC, SVD, PFO, PAS) are equipped with FBA-23
accelerometers. These seismograms are the most useful for three reasons: first and most
importantly, recordings from numerous aftershocks are available at the same sites,
allowing the accuracy of Green's functions used in the inversion to be evaluated; second,
the broadband response of these systems is superior to analog systems, allowing longer

periods to be recovered; and third, the data is recorded in absolute time.

Table 3.1. Seismometer Stations

Code  Station Lat®N  Long®W Range (km) Instrument
AMB  Amboy ¢ 34560  115.743 67 to 98 SMA-1 €
BAK  Baker{ 35272 116.066 88 to 129 SMA-1
BAR  Barstow ¢ 34.887 117.047 28 to 100 SMA-1 €
BOR  Boron ¢ 35.002 117.650 83 to 147 SMA-1
FHS  Fire House § 33.925 116.549 27 to 94 FBA &
FTI Fort Irwin ¢ 35268  116.684 59 to 127 SMA-1 €
GSC  Goldstone T 35.303 116.808 62 to 133 FBA-23
HEM  Hemet { 33729  116.979 69 to0 114 SMA-1 €
IND Indio O 33.717 116.156 53 to 128 SMA-1
JOS Joshua Tree ¢ 34.131 116.314 10 to 81 SMA-1 €2
MVH  Morengo Valley § 34.053 116.572 17 t0o 79 FBA @
PAS  Pasadena T 34.148 118.172 143 10 164 FBA-23
PFO  Pinon Flats T 33.609 116.455 59 to 130 FBA-23
POM  Pomona ¢ 34.056  117.748 116 to 127 SMA-1 €
SLT  Silent Valley ¢ 33.851 116.852 51 to 99 SMA-1 2
SVD  Seven Oaks Dam T 34.104  117.098 62 to 76 FBA-23 ©
TWN  Twentynine Palms ¢ 34.021 116.009 41 to 108 SMA-1 €
YER  Yermo ¢ 34.903 116.823 18 to 92 SMA-1

0 CSMIP

1t TERRAscope

§ USGS

Q) stations with absolute time

The strong-motion seismograms collected by CSMIP were recorded on SMA-1
instruments. This group comprises the majority of data used in this study (twelve stations)
and, with two exceptions (BOR, YER), was also recorded with absolute time. The timing
for BOR and YER was determined using predicted waveforms obtained from inversion
with these stations having zero weight. We include them because they are located in a

poorly-sampled area of the near-source region. These displacement seismograms are
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derived from the recorded accelerograms by CSMIP and have a long-period response that
1s stated to be reliable to about 15 s [CSMIP, 1992].

We also use two stations (FHS, MVH) deployed by the USGS to record
aftershocks of the Joshua Tree earthquake [Hough et al., 1993]. This system consists of a
Kinemetrics FBA sensor and a digital GEOS recorder. MVH is an important record since
it is the closest station west of the hypocenter.

It is preferred to use all available data in the study; however, some characteristics
of particular data preclude their use. For example, seismograms recorded on two SMA-2
instruments operated by Southern California Edison are among the closest to the surface
rupture but are not used because the instruments have unknown response at periods longer
than a few seconds and our Green's functions are not accurate at periods shorter than a
few seconds. Also, these two stations do not have absolute time. Moreover, because
there is greater station density in the urban area to the southwest of the epicenter, some
similar CSMIP and USGS seismograms from this region are not included in the final data
set.

The recorded accelerograms are twice integrated to displacement and high-pass
filtered using a zero-phase (two-pass), four-pole butterworth filter with a 0.08 Hz (12.5 s)
corner. The sharp filter is necessary to assure that the data and synthetic have similar
power at frequencies beyond the corner. The seismograms from the four TERRAscope
stations are high-pass filtered using a 0.05 Hz (20 s) corner. The high-pass filter corners
are required by the increased signal-to-noise ratio at lower frequencies. For all stations,
we use a low-pass filter corner at 0.25 Hz (4 s). The corresponding Green's functions are
filtered in an identical manner. A low-pass filter is used to provide more accurate Green's
functions — this particular corner was determined by modeling aftershock seismograms
recorded at TERRAscope. The final set of eighteen three-component seismograms is
shown in Figure 3.3 (using a four-pole low-pass filter at 0.25 Hz). The data are aligned
with the delayed mainshock origin time as the start time. The peak amplitude (in cm) of
each seismogram component is labeled next to the station symbol in Figure 2.3. In Figure
3.3, we indicate (as a percentage) the ratio of the power of each component to the summed
power of the three components at each station; this relative power measure is used in the

inversions to weight the seismograms.
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Figure 3.3. Plot of the filtered displacement data for the three components of motion (N-S, E-W,
Z). Most data are bandpass filtered between 4 and 12.5 s period. The TERRAscope stations
(GSC, PFO, SVD, and PAS) have better long-period response and are filtered using a
highpass corner of 20 s. The power of each component as a percentage of the total power of
the three components at each station is listed to the right.
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3.3 Green's Function Accuracy

The distances from the over 70 km long mainshock fault to the low-gain stations
range from 10 to 164 km (Figure 2.3). The inversions require accurate Green's functions
over this wide range. Previous source investigations of this type [Hartzell and Heaton,
1983, 1986; Beroza and Spudich, 1988; Hartzell, 1989; Beroza, 1991; Hartzell et al.,
1991; Hartzell and Mendoza, 1991; Steidl et al., 1991; Wald et al., 1991] have used higher
frequency data (>0.5 Hz) recorded at shorter distances. Because in this study we are
modeling the entire recorded wavefield and the distances are comparatively large, we
found the higher frequency data could not be accurately modeled with the proposed
velocity models. In this Landers earthquake geometry, source-station paths traverse
faulted regions that have strong lateral velocity variations. The velocity heterogeneity is
most important at shorter periods and a simple 1D model is not capable of reproducing
waveform complexity arising from the true structure; therefore, it is necessary to determine
the highest frequencies for which a 1D velocity model does produce accurate Green's
functions.

To accomplish this, we compare recordings of moderate aftershocks (that have a
known mechanism) from the four closest TERRAscope stations (GSC, SVD, PFO, PAS)
to theoretical seismograms computed using velocity models developed for the Landers
region in other studies. The frequency range over which we can fit the aftershock
waveforms determines the frequency range over which we can model the mainshock
waveforms and the measure of fit is an upper bound on the theoretical error in the
mainshock inversion. The distances (A = 56 to 175 km) and azimuths spanned by the
aftershocks are similar to those of the mainshock.

The TERRAscope stations recorded thousands of aftershocks in the Landers
earthquake sequence [Kanamori et al., 1992; Hauksson et al., 1993]. We use 1D velocity
models to compute theoretical seismograms using a frequency-wavenumber integration
method [Wang and Herrmann, 1980; Saikia, 1994] for twelve aftershocks located close to
the rupture surface with hypocenter locations and mechanisms determined in an
independent study [Thio and Kanamori, 1995]. We use this comparison both to evaluate
the different velocity structures and to assess Green's function accuracy. In this analysis,
we seek a single velocity model that best predicts the entire aftershock waveforms at the
four TERRAscope stations and to determine the passband over which the velocity model is

adequate. Although there is some error in the assumed aftershock depth and focal
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mechanism, which will degrade the fit somewhat, the source parameters were estimated in
a detailed study and should be more precise than those obtained from arrival times and
first-motions [Thio and Kanamori, 1995].

In Figure 3.4 the P-wave velocity is plotted versus depth for five different velocity
models. Two of these models (SoCalR, LanR) are from Hauksson et al. [1993] and were
derived by minimizing aftershock traveltime residuals observed on the Southern California
short-period array. Another P-wave model (DEP), derived by Eberhart-Phillips et al.
[1992], is based on calibration explosions in the Landers source region. This model is
similar to LanR, but contains eleven constant-velocity layers rather than five. The fourth
model (CJA) [Ammon and Zandt, 1993] was derived using receiver function analysis of
teleseismic waveforms. In all models only the P- or S-wave velocity was determined, so
in the absence of other information we assume a Poisson solid («a = ﬂ\/§ ). The fifth
velocity model we test (DSD) [Dreger, 1994a] was developed for Southern California and
has both P- and S-wave velocity defined.

If the moment is allowed to vary, all five of these velocity models yield positive
variance reductions at periods longer than 5 s. This is demonstrated in Figure 3.4 with
histograms of variance reduction obtained with each velocity model. The differences in the
velocity models at depths greater than 10 km have small effect on the regional surface
waves (Rg and Lg) that dominate the passband (5 to 15 s period) of these displacement
seismograms. In this passband, the important differences among the five models are in the
velocities of the upper few km, which have strong effect on the surface wave amplitude
and dispersion. For each velocity model, we compute the variance reduction between data
and theoretical seismograms for twelve representative aftershocks recorded at the three-
component TERRAscope stations. The LanR velocity model works best and produces the
smallest overall misfit to the aftershock waveforms.

We compute theoretical aftershock seismograms using the LanR velocity model
and a triangular source time function of 0.3 s duration. Using a constant time function is
valid because we are interested in frequencies lower than the aftershock corner
frequencies. We evaluate the fit to the aftershock data as a function of the passband using
different low-pass filter corners. The variance reduction obtained with the aftershock

seismograms indicates the level of fit we expect when modeling mainshock seismograms.
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Figure 3.4. Variance reduction obtained using five 1D velocity models determined for the
Landers region by Hauksson et al. [1993] (LanR, SoCalR), Eberhart-Phillips et al. [1992] (DEP),
Dreger[1994a] (DSD), and Ammon and Zandt[1993] (CJA). Each histogram shows the variance
reduction for each station for 12 aftershocks near the Landers fault zone recorded at four
TERRAscope stations (GSC, SVD, PFO, PAS). With each P-wave model (except DSD) we
assume a Poisson solid, and standard density and attenuation relations. At the periods used in
this study, the important differences among these models are in the upper 10 km. The LanR
model provides the best fit to the aftershock waveforms and we use it to compute Green's
functions for the models shown in this paper.
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Figure 3.5 shows some of the effect of the different low-pass filter corners on the
fit to aftershock seismograms. These displacement seismograms are bandpass filtered
using a zero-phase, four-pole butterworth filter with a high-pass corner at 0.067 Hz (15 s
period) and three different low-pass corners at 2.0, 0.5, and 0.25 Hz (0.5, 2, and 4 s
period). The observed and theoretical seismogram pairs are plotted together for the east-
west component of motion for eight of the aftershocks. Figure 3.6 shows the aftershock
locations and mechanisms. For the velocity models tested, the theoretical-data seismogram
fit is better at lower frequencies. When we allow higher frequencies (>0.25 Hz), the
modeling assumptions are less accurate and the fit to the data is poor.

At large propagation distances (e.g., PAS) the homogeneous layering in the
velocity model produces short-period dispersed surface waves that are not seen in the
recorded seismograms. This ringing phenomena is an undesirable artifact of the perfect
layering in the 1D velocity model. These unnatural arrivals are not a problem when the
seismograms are filtered to remove periods shorter than 4 s. For some aftershocks, error
in the assumed mechanism appears to have an important contribution to the misfit. For
example, the uniformly poor fit for event #14 suggests that either the mechanism or depth
is not well determined. In general, the smaller magnitude aftershocks (e.g., events #4 and
18) have smaller amplitude displacements with low signal-to-noise ratios. An additional
contribution to the misfit at the shortest periods is attributable to the unknown rise time
(duration of slip function) of each aftershock.

Histograms are shown in Figure 3.7 of the variance reduction obtained with the
LanR model and the three different low-pass filter corners at 2.0, 0.5, and 0.25 Hz. The
histograms in Figure 3.7 show the variance reduction for each passband. As shown in
Figure 3.5, we cannot reliably model the entire seismogram at frequencies much higher
than 0.25 Hz. Based on this analysis we only seek to fit data at frequencies below 0.25
Hz when modeling the mainshock and expect a variance reduction of approximately 25%.

Just as the rise time is an unknown when modeling aftershocks, we also do not
know how and to what extent the rise time varies across the rupture surface of the
mainshock. The relationship of rise time to slip amplitude and propagation has important
implications for earthquake physics. In the fault model, when we constrain each point on
the fault to slip just once, we find that rise times greater than 3 s generate pulses broader
than those observed in the mainshock seismograms. This result is consistent with that of

Dreger [1994a], who found that mainshock seismograms recorded on TERRAscope
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Figure 3.5. Example of modeling of aftershock displacement seismograms and the effect of
using different low-pass filter corners (east-west component). The legend is shown in the lower
right. For each station and aftershock, three pairs of seismograms are shown using low-pass
filter corners at 2.0 Hz (0.5 s period), 0.5 Hz (2 s), and 0.25 Hz (4 s), and a high-pass corner at
0.067 Hz (15 s). The rows show same-station variability due to changing distance, depth and
mechanism. The columns show the same earthquake at the TERRAscope stations (GSC, SVD,
PFO, PAS). In each case, the horizontal distance in km is indicated in the upper left, and the
depth and magnitude are shown at the top of each column. Paths to these four stations from
these aftershocks are representative of those encountered in the mainshock geometry. The
regional surface waves Lg and ARg are the largest amplitude arrivals at long periods.
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Figure 3.6. Map view of the aftershock epicenters and focal mechanisms used in Figure 3.5. The
label for each mechanism is the event number.
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Figure 3.7. Histograms of variance reduction obtained by modeling aftershocks using the LanR
velocity model and three different low-pass filter corners at 2.0 Hz (0.5 s period), 0.5 Hz (2 s),
and 0.25 Hz (4 s), and a high-pass corner at 0.067 Hz (15 s). When the higher frequencies are
removed, the fit to the data is improved. We use this analysis to determine the passband over
which the theoretical Green's functions are adequate for modeling the mainshock. The level of
variance reduction obtained in this manner is an upper bound on theoretical error in the

mainshock inversion.
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require short (1 to 3 s) rise times. The longer period data (> 4 s) used in this study is
insensitive to the high frequency characteristics of the rise time. In other words, because
the seismograms are low-pass filtered removing energy shorter than 4 s period, any rise
time of 2 s or less produces essentially the same results as does a step function response

(instantaneous rise time).

3.4 Solving for Fault Rupture Behavior

We solve the linear problem for slip amplitude for a range of assumed rupture
velocities i) using a single time-window slip model and ii) using a multiple time-window
slip model, and iii) the linearized problem for rupture time given a starting model and an
assumed slip distribution. In the linearized problem, we fix the distribution of slip, use
the best average rupture velocity as the starting model, and solve for perturbations to the
average rupture velocity. We evaluate the fit to the data seismograms using the variance
reduction measure defined earlier (equation 2.17). We also evaluate the fit of the predicted
surface displacement from each slip model with the independent observations of mapped
surface displacement.

For the slip amplitude inversion, we assemble a system of linear equations in the
familiar form Am =d. This is described in Section 2.3. The A matrix relates slip at each
point on the fault to the observed seismograms, m is the model vector (slip amplitudes),
and d is the data vector.

Theoretical seismograms for each fault element define the columns of A. Figure
3.8 shows some of these Green's functions from the top and bottom row of elements for
six stations at representative azimuths (see Figure 2.3). The variation of the Green's
functions for the azimuths shown and the difference between the top and bottom element
rows is characteristic of the entire station set and a qualitative indicator of the depth
resolution possible using this model parameterization, station geometry, and passband.

For each of the 54 seismograms we use 80 s of data sampled at 0.25 s, so the data
dimension is 17,280. When we restrict each element to only slip once, the size of the
model space N is 204, which is simply defined by the chosen discretization of the fault
surface. When slip is permitted to occur on the same element in adjacent time windows,
the size of the model space is multiplied by the number of windows. In the linearized
inversion for rupture time, each element slips once and we solve for the best rupture time

for each of the 204 elements. For comparison, the number of unknowns in other source
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Figure 3.8. Theoretical seismograms for the top and bottom row of selected model elements
for six stations at representative azimuths (see Figure 2.3): PAS (A=143 to 164 km), SLT
(A=51 to 99 km), PFO (A =59 to 130 km), AMB (A =67 to 98 km), FTI (A=59 to 127 km), and
BOR (A=84 to 147 km). For each station one horizontal component is shown with the peak
amplitude (cm) labeled below. Theoretical seismograms are arranged from north (top) to south
(bottom). Each row displays displacement seismograms for the appropriate component and
station. These seismograms are representative of those used in the inversions.
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inversions that use seismic data range from 400 to 600 [Hartzell and Heaton, 1986; Beroza
and Spudich, 1988; Hartzell, 1989; Hartzell and lida, 1990; Wald et al., 1991; Steidl et
al., 1991] to 1700 [Beroza, 1991] to as many as 10,000 in the clearly under-determined
case [Frankel and Wennerberg, 1989]. In this study we seek to keep the model space
dimension as small as possible while still fitting the seismic waveforms acceptably well.

In the absence of specific knowledge of the data covariance, we normalize the three
components of motion by the total power at each station. With this scheme each station
has equal weight in the inversion and the contribution of the vertical component is
minimized relative to the two horizontal components. This is particularly advantageous for
the Landers earthquake because the horizontal components are less affected by the known
strong variations in near-surface velocity. The weighting matrix R = diag[1/powers?],
where powers’ is the summed power of the three components at each station.

We first solve the single-window inversion where each element slips once, when
the rupture front passes. Slip starts when the rupture front reaches the center of the
element. By restricting the rupture to occur only once, we keep the model space small.
We also solve a multi-window inversion where slip is allowed to occur at each element in
three adjacent time-windows each separated by 2 s. Although there are more free
parameters in this latter problem, the improvement in the fit to the data is quite modest.
Two desirable attributes of the multi-window model are that small deviations from the
assumed rupture velocity are accommodated, and the rise time at each element can vary
from 2 to 6 s. Allowing the fault to slip several times introduces additional parameters and
increased non-uniqueness, but provides a more flexible model and yields some
improvement in the fit to the data.

We regularize the system to yield a slip model that varies smoothly across the fault
plane by finding the distribution of right-lateral slip that simultaneously minimizes the 2-
norm between observed and predicted seismograms, and minimizes the first-derivative
smoothing norm. By minimizing the gradient of slip amplitude we lower the condition
number (ratio of largest to smallest eigenvalue) and recover a more stable slip distribution.

This augmented linear system is written

[ep)m =) =

where D represents the smoothing matrix and &, is the scalar that weights D. The value of

&, controls the smoothness of the model and is usually based on the desired solution
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smoothness. Although it is better to compute &, using an objective approach like
generalized cross-validation [Wahba, 1990; Matthews and Segall, 1993], it is difficult to
implement without improved knowledge of data and model covariance. There is a
predictable trade-off between model roughness, defined as IDmlI?, and data fit — a
rougher model fits the seismic data better but is a less stable result. In the case of the
Landers earthquake, we have the benefit of independent observations of surface
displacement over the entire fault length. We use these independent data to determine
objectively the best smoothing weight.

To limit further the possible range of solutions, we add boundary conditions to the
top and bottom of the fault model. At the bottom of the fault we add the homogeneous
boundary condition and constrain slip to approach zero. At the top of the fault we
constrain the shallowest fault elements to match the observed surface slip, s. The new

system is written

RA Rd

&D || =] 0 |. (3.2)
1T TS

YB 0

We first vary the smoothing without using the boundary conditions (£&,#0, T= y=0) to
find the value of &, that yields a solution that best fits the observed surface slip. Next we
impose the surface and bottom constraints to obtain refined models. We solve this linear
system using the non-negative least squares subroutine (nnls) from Lawson and Hanson
[1974].

The Newton-Raphson iterative procedure described in Section 2.4 estimates the
optimal rupture time of each element assuming the distributed slip model found in the
previous single time-window inversion step, and solves for perturbations dm to a starting

rupture time model m. We iterate on my = my | + omy, until the solution converges.

3.4.1 Model Resolution
We have presented two linear inversion methods for finding the distribution of slip
amplitude. The first model assumes each fault element ruptures once. This is equivalent
to restricting the rise time to be 3 s or less everywhere on the fault surface; both data and

theoretical seismograms only contain periods longer than 4 s, so the model is not sensitive
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to variations in rise time duration when less than about 3 s. Using this single time-
window method, it is only possible to find a best-fitting constant rupture velocity. The
second method permits variable rupture velocity by allowing slip to occur in three adjacent
time windows each separated by 2 s. The two methods each have shortcomings. The
single time-window model can not recover potentially important changes in the rupture
velocity or rise time. The multiple-window model has more free parameters and allows
some variability in both rupture velocity and rise time; however it does not significantly
improve the fit to the data.

The shortcomings of each method can be demonstrated with synthetic test cases.
We compute synthetic data for known, hypothetical rupture models using the Landers
mainshock fault geometry, add uncorrelated white noise, and image the slip distribution
and rupture time using each method. The details of these synthetic tests are presented in
Section 2.5.3; the results are summarized below.

The single time-window method finds the best average rupture velocity; variations
in the rupture velocity and the rise time are not recovered. This single time-window
method does a good job of recovering the known seismic moment. In contrast, the three
time-window model can image the variable rise time and rupture velocity by putting slip in
later time windows; however, in the Landers geometry this method does a poor job of
recovering details of the input rupture velocity in the presence of noise. The image of rise
time at each slip patch is similar to the test model, but the seismic moment is overestimated
by more than 70% (because much of the noise is modeled as slip). Finally, the fit to the
seismograms is only marginally improved over the single-window model (29 vs. 26%
variance reduction).

We might note that if we start with the correct slip distribution and use the
linearized inversion to solve for rupture time only, we recover the input rupture velocity
variation, suggesting that if we can determine the slip distribution using independent
methods (e.g., geodetic), we can reliably image the rupture velocity variation. In Chapter
4, we use this approach in modeling the Landers mainshock by using geodetic

measurements and fault offset at the surface to establish the slip model.
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3.5 Inversion Results

3.5.1 Slip Amplitude Distribution

Five solutions to equation 3.2 that use different smoothing weights and boundary
conditions are shown in Figure 3.9. The vertical cross sections extend from the surface to
18 km depth. The length of the fault with overlapping regions superimposed is 83 km,
and the dimensions of the individual segments are labeled in the figure. The contour lines
(interval of 1 m) denote right-lateral slip amplitude.

The result for the unsmoothed case without prescribed boundary conditions (&, = T
= y=0) is shown in Figure 3.9a. This solution is rough with slip concentrated in small
patches and peak displacements in excess of 14 m near the surface. In contrast, the
mapped fault offset is more smoothly varying with a maximum amplitude of approximately
6 m [Ponti, 1992; Sieh et al., 1993; Johnson et al., 1994]; comparison of the observed and
predicted surface slip using this model gives a variance reduction of -30.0%. The
condition number for this A matrix (2.2x10°) is close to the reciprocal of our computer's
accuracy (single precision), indicating that numerical round-off error is appreciable. The
large condition number also suggests that components of the solution are poorly
constrained. The seismogram variance reduction is 28.3%. Although the roughness and
instability of this solution is unappealing, it fits the seismograms the best and is in some
respects similar to smoother models; for example, the percentage of moment on each fault
segment remains approximately constant independent of the smoothing value. The total
seismic moment is in fair agreement with other studies as discussed below.

Because the unsmoothed model is inconsistent with the continuity and amplitude of
the mapped surface slip, a smoothing constraint is used to stabilize the solution. Solutions
using three different smoothing weights are shown in Figure 3.9b-d. With the addition of
light smoothing (Figure 3.9b), the variance reduction is decreased only slightly (28.0 vs.
28.3%), and the system is better conditioned. The model in Figure 3.9¢ uses the preferred
value of smoothing (&, = 30). The value of &, depends on how the rows of A and d are
normalized and has meaning only for this particular application. Figure 3.9d shows an
heavily smoothed model (&, = 200) that fits the seismograms poorly (16.3%), although the
surface slip variance reduction is comparable to that found in Figure 3.9¢ (37.0 vs.
37.1%).
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Figure 3.9. Summary of slip on the three fault segments obtained using different smoothing
values, and the effect of a homogeneous boundary condition for the deepest element. The
cross sections are the same as those shown in Figure 3.2, and, in each case, the rupture velocity
is 2.5 km/s. The optimal smoothing is found by minimizing the misfit between the predicted slip
on the shallowest element and the geologically mapped surface slip: a) No smoothing; b) Light
smoothing; ¢) Chosen smoothing; d) Over smoothed; e) Boundary condition at model bottom; f)
Trade-off curves (negative y-axis) for the fit to the seismograms and the fit to the surface slip
obtained with the boundary condition at the fault bottom (arrow marks the model roughness

obtained with the chosen smoothing).
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The solutions in Figure 3.9a-d have considerable slip at all depths. Each model
has large displacements deep on the Homestead Valley (middle) fault segment. There were
few aftershocks at depths greater than 15 km [Hauksson et al., 1993], and because of
decreasing strength and increasing plasticity [Scholz, 1990], we do not anticipate much
high-frequency displacement at these depths. The solutions with the homogeneous
boundary condition on the deepest fault elements enforce this assumption. The result with
Y= &/2, which adds the boundary condition at the bottom of the model, is shown in
Figure 3.9¢.

Results using the different smoothing weights are summarized in the two trade-off
curves plotted in Figure 3.9f. This plot shows both the fit to the seismograms and the fit
to the mapped surface offset for different smoothing weights and including the boundary
condition at the fault bottom. As expected, the smoothing parameter controls the simple
trade-off between model roughness, IDmlf?, and the fit to the seismograms. In contrast,
the fit to the surface slip for different smoothing strengths has a well-defined minimum.
We choose the smoothing value used in Figure 3.9¢ (indicated in Figure 3.9f with an
arrow), which represents a compromise between the fit to the seismograms and the fit to
the surface offset.

For this assumed value of smoothing, we perform the inversion for fault slip using
arange of average rupture velocities, v,, and evaluate each solution by its fit to the seismic
data and the offset mapped by Ponti [1992]. Figure 3.10a shows that the location of the
high-slip regions is strongly dependent on the rupture velocity so that the surface offset
provides an important constraint on the true v,. In this figure, the slip is summed for the
two overlapping regions of the three fault segments. Although there are near-surface
effects that can cause surface measurements to differ from the average slip in the adjacent
3x3 km? section of the fault, the most representative v, is expected to be that which has
the highest correlation with the mapped surface offset.

We find v, = 2.5 km/s gives the best fit to the seismograms and a good fit to the
surface displacement. In this comparison, the surface slip is not explicitly used in the
inverse problem, but it provides a useful independent check on the solution. The variance
reduction for both the seismograms and the surface slip is shown for the tested range of v,
in Figure 3.10b. The maximum in the fit to the seismograms is broadly peaked, with the
range from 2.4 to 2.7 km/s producing the best results. A 2.5 km/s rupture velocity shows

good agreement with the mapped surface displacement, albeit a slightly higher value (2.6
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Figure 3.10. Comparison of fault slip solutions for the 1992 Landers earthquake using the single-
window method and different average rupture velocities, and the corresponding agreement with
the mapped surface slip. A rupture velocity of 2.6 km/s gives the best fit to the seismograms
and an acceptable fit to the surface slip. a) Right-lateral slip amplitude solutions obtained for
rupture velocities of 2.0, 2.3, 2.6, 2.9, and 3.2 km/s. The grayscale bar to the right and the 1 m
contours indicate right-lateral displacement on the fault surface. Slip is summed for the
overlapping portions of the fault. The hypocenter defines the horizontal origin and is indicated
by a symbol at 4.5 km depth. b) Variance reduction (AO'Z) as a function of rupture velocity for
both the fit to seismograms and the fit to surface slip. The seismic moment obtained for each
rupture velocity is shown in the bar chart with units of 1018 N-m.
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km/s) attains the best correlation. Since the quantitative comparison of predicted to
observed surface slip is sampled every 3 km, the fit is spatially aliased and this small
difference is insignificant. Also shown in Figure 3.10b is the seismic moment obtained
using the different rupture velocities. The moment is fairly constant (5 to 7x10'° N-m) for
v, less than 2.9 km/s.

The best-fitting average rupture velocity is roughly 70% of the local shear wave
velocity, which is less than the value of 80% often used in studies to predict strong ground
motion for hypothetical earthquakes [Cohee et al., 1991]. As noted by Hartzell et al.
[1991] and summarized in Table 1.1, an average rupture velocity of near 2.5 km/s is
preferred in many other source inversions of crustal earthquakes [Hartzell and Heaton,
1983; Hartzell and lida, 1990; Hartzell and Mendoza, 1991].

The format of Figure 3.11 is analogous to Figure 3.10, except that here the three
time-window inversion method is used. The trade-off between slip amplitude and v, is
less pronounced when this method is used because the displacement can be distributed
across the three time-windows. For example, the slip models using v, = 2.6 and v, = 2.9
km/s shown in Figure 3.11a are very similar; however, when v, = 2.6 km/s, most slip
occurs in the first window, and when v, = 2.9 km/s, slip occurs equally in the first two
windows. This is shown in Figure 3.11b, where the moment in each window is plotted
for each rupture velocity. As seen in the tests using synthetic data, the greater flexibility of
the multi-window method is evident in the relative uniformity of the variance reduction for
a wide range of rupture velocity. This is in contrast to Figure 3.10b, where there is a well-
defined maximum in the seismogram variance reduction at 2.5 km/s. The fit to the surface
offset using the three time-window method does not help constrain the rupture velocity
because for all values of v, the predicted offset is larger than the observed, so the largest
surface slip variance reduction occurs when the moment is smallest (at v, = 3.5 km/s).

A comparison of Figures 3.10 and 3.11 also reveals two other familiar
characteristics of the slip distribution and seismogram variance reduction seen in the
solutions using synthetic data. The total seismic moment is larger but the seismogram fit is
only slightly improved using three time-windows. Recall that in the sensitivity test the
moment obtained using one time-window was 20% larger than the true moment, while the

three time-window model overestimated the input moment by 40 to 60%.
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Figure 3.11. Comparison of fault slip solutions for the 1992 Landers earthquake using the three-
window inversion method. a) Slip amplitude solutions obtained for average rupture velocities of
2.0, 2.3, 2.6, 2.9, and 3.2 km/s (in this case, the rupture velocity is determined by the time of the
first time-window, not the centroid). The grayscale bar to the right and the 1 m contours indicate
right-lateral displacement on the fault surface. b) Variance reduction (AO'Z) as a function of
rupture velocity for both the fit to seismograms and the fit to surface slip. The seismic moment
obtained in each of the three time-windows is shown in the bar chart. The moment is nearly
constant (7 to 8x1019 N-m) for rupture velocities greater than 2.3 km/s.
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The best-fitting, single time-window solution is shown in Figure 3.12a. The
largest displacement is 38 km north of the hypocenter and begins approximately 16 s after
the initiation of rupture. There is good correlation with the surface slip over the entire fault
length. The peak slip in the model at 28 km is not observed in the surface offset. If
7 >> 0, the solution is forced to match the observed displacements at the ground surface
within some tolerance; this solution and the corresponding fit to the surface offset is
shown in Figure 3.12b. The constrained solution is similar to Figure 3.12a at depths
greater than 3 km, but also conforms to the mapped slip at the ground surface. The
decrease in variance reduction from adding this constraint is small (1.2%). The preferred
slip models using each inversion method are shown in Figure 3.13. These results include

the surface slip boundary condition.

3.5.1.1 Seismic Moment

The total seismic moment for the single-window model is 6x10'? N-m and for the
three-window model it is 8x10!° N-m. Moments determined in other studies range from 7
to 11x10!” N-m. Specifically, the moments determined from teleseismic and regional
waveforms are: 7x101° N-m (USGS CMT using 22 stations); 8x10!? N-m (teleseismic P
and S), 8x10!° N-m (TERRAscope at 20 s period), and 11x10!? (teleseismic surface
waves) [Kanamori et al., 1992]; 11x10!° N-m (Harvard CMT using 31 stations); 8x10!°
N-m [Dreger, 1994a] and 11x10!° N-m [Campillo and Archuleta, 1993] using
TERRAscope; and 7 to 8x10'° N-m by Wald and Heaton [1994a]. The moment obtained
from modeling EDM and GPS data is 8x10'° N-m [Murray et al., 1993] and 9x10'° N-m
[Freymueller et al., 1994]. Although the moment obtained with three time-windows is in
better agreement with the other estimates, the sensitivity analysis suggests this method
tends to overestimate the moment required by the data and strongly depends on the specific
choice of regularization. It is important to recognize that even though the multi-window
model has a considerably larger moment than the single-window model, the fit to the
seismograms is very similar.

The variability of seismic moment with data type is sometimes attributed to the
variable bandwidth of the data. According to this interpretation, the smaller moment of the
single time-window solution results from the limited long-period response of the strong-
motion data. It is clear that the strong-motion data is sampling a limited portion of the

radiated energy bandwidth. To explore this hypothesis we used only TERRAscope data
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Figure 3.12. Preferred slip models using a 2.5 km/s constant rupture velocity with and without the
surface slip boundary condition applied. Above each slip model is the comparison between the
prediction (model) and the mapped slip. Note that the overall amplitude of the predicted slip is
in good agreement with the observed surface slip. The grayscale bar and the 1 m contours
indicate displacement on the fault surface. a) Slip model without surface slip constraint.
Seismogram variance reduction is 26.7%. b) Slip model with surface slip constraint. Seismogram
variance reduction is 25.5%.



Chapter 3 — Rupture of the 1992 Landers earthquake 68

] Camp Rock-Emerson

' - - ' ‘I L
-1 L

73 70 67 64 61 58 55 52 49 46 43 40 37 34 31 28 Homestead Valley

One time-window

Ao i i Lol

38353229262320171411 8 Johnson Valley

0

-12

7370 67 64 61 58 55 52 49 46 43 40 37 34 31 28

Three time-windows

38353229262320171411 8

right-lateral slip (m)

6 543210

2 A " " i

171411 8 5 2 -1 -4 -7-10

Figure 3.13. Best-fitting slip amplitude models for the Landers earthquake. The three fault
segments from north to south are representative of the Camp Rock-Emerson (CRE), the
Homestead Valley (HV), and the Johnson Valley (JV) faults. a) Three fault segment cross
section of right-lateral slip amplitude obtained with the one time-window method and a rupture
velocity of 2.5 km/s. The grayscale bar and the 1 m slip contours show displacement on the fault
surface. The seismic moment is 6x1019 N-m. b) Cross section of best-fitting slip model
obtained using the three time-window method and a first-window rupture velocity of 2.8 km/s.
The moment of this model is 8x1019 N-m.
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(to 50 s) and found a rupture model with the same approximate moment. This result
suggests that there is unmodeled signal in the strong-motion data; however, because the
majority of the seismogram power remained at periods between 5 and 15 s, this test may
not be diagnostic. In short, the multiple window method fits more of the seismogram, but
it is not clear whether it is fitting signal or noise or if a more accurate rupture model was
obtained. Destructive interference in the Green's function summation is a likely

explanation for the larger seismic moment in the multi-window result.

3.5.1.2 Model Fit of Data Seismograms

The fit to the three components of motion at each station is shown in Figure 3.14
for the single time-window and the three time-window models. The data are black solid
lines and the model seismograms are plotted as dashed (single window) and gray (three
windows) lines. The multiple window method fits the data slightly better than the single
window method (31.0 vs. 25.5%). Both data and model seismograms are plotted at the
same scale and the amplitude is normalized to the largest seismogram peak. The variance
reduction is listed at the right of each seismogram for the single window result. Since each
station holds equal weight and each component is weighted proportional to its power, the
largest amplitude horizontal components show the largest variance reduction.

Most of the seismograms are fit well, including the absolute amplitudes, which
vary from 0.7 to 28.1 cm in peak amplitude (see Figure 2.3). Some of the stations close
to the epicenter (FHS, MVH) are slightly misaligned, suggesting that the mainshock may
have initiated in a slightly different location than the foreshock, or that there are strong
velocity variations not accounted for in the 1D velocity model used to calculate the Green's

functions.

3.5.1.3 Comparison with Geodetic Slip Models
Geodetic coverage for the Landers earthquake allows independent estimation of the
slip distribution using measurements of the horizontal displacement field [Freymueller et
al., 1994]. Because of the redundancy of the measurements, the associated error is well
determined, allowing use of the appropriate covariance weighting when inverting for the
slip distribution. The slip distribution estimated from geodetic data (see Chapter 4) is most
similar to the model shown in Figure 3.13a, in particular on the Johnson Valley segment,

but has higher slip amplitudes (the moment is 9x10'® N-m). As described in the next
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chapter, we have assumed a slip model derived from geodetic observations in a linearized
inversion for rupture history using seismograms as data. When the geodetic slip model is
assumed, a fault model is obtained that matches the geodetic data, has larger moment, and
fits the seismograms with modest perturbations to a constant-velocity rupture model.
Recall that the tests suggest that if the slip distribution can be correctly determined, high-
resolution features of propagation can be inferred from the seismograms.

The static displacements measured by various geodetic methods provide an
independent check of the slip model. We use the single-window model shown in Figure
3.13a to compute predicted horizontal displacements at sites where co-seismic
displacement is determined using GPS and EDM [Freymueller et al., 1994], and synthetic
aperture radar interferometry [Massonnet et al., 1993]. The comparison of observed and
predicted horizontal displacement shows good agreement in the direction, but a tendency to
underestimate the observed amplitudes. Thus, although the seismic models have smaller

total moment than the geodetic models, the slip distribution looks similar.

3.5.2 Rupture Front Propagation

3.5.2.1 Linearized Inversion for Rupture Propagation

We use the linear, one time-window solution obtained with a constant rupture
velocity of 2.5 km/s (Figure 3.13a) as the initial model in a linearized inversion to optimize
the rupture time of each fault element. As shown earlier in Figure 3.10, when a different
rupture velocity is used, a different slip model results, demonstrating a strong trade-off
between slip amplitude and rupture time [Spudich and Frazer, 1984]. Simultaneous
estimation of rupture time and slip amplitude with sufficient data should be able to
overcome this trade-off; however, without an a priori model covariance matrix, it is not
clear how to weight the two types of unknowns.

Previous investigators have invoked a weighting that results in perturbations to
these parameters that are deemed reasonable [e.g., Beroza and Spudich, 1988]. An
alternative method is to allow the rupture time to vary by letting each fault element slip
several times in adjacent time-windows [Olson and Apsel, 1982]. As discussed earlier,
this approach suffers the disadvantage of requiring a large increase in the model
dimension. Regardless of the approach used, recovering the time-dependent behavior of

the rupture is difficult for the Landers earthquake because the large source-receiver
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Figure 3.14. Fit to the recorded displacement seismograms using the linear solutions shown in
Figure 13. The data seismograms (solid) and model seismograms (one window-dashed, three
windows-gray) are plotted at the same amplitude scale. The variance reduction (A0‘2) for each
station component is listed to the right of the corresponding seismograms for the one-window
solution. The average weighted variance reduction is 25.5% using one window and 31.0% using
three windows.
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distances necessitate using longer-period waveforms dominated by regional surface waves
rather then body waves.

Recall that with the single-window approach, we separate the inversion for slip
amplitude and rupture time to avoid the problem of relative weighting. However, because
we first solve for slip and then for rupture time, the procedure favors a variable slip model,
with the spatial roughness determined by the smoothing weight. The result of the
linearized inversion for rupture time is shown in Figure 3.15a. We experimented with
many permutations to assess the effect of using other slip models and variable smoothing
on the solution. The model shown in Figure 3.15a produced the largest increase in
variance reduction for the smallest rupture time perturbations.

Allowing these small perturbations (< 2 s) to the average rupture velocity starting
model increases the variance reduction modestly from 25.5% to 29.1%. The data and
model covariance are not known, but we are at the limit of how well we expect to fit the
data based on the modeling of aftershock waveforms (see Figures 3.4 to 3.7). This model
of rupture time shows a number of small but possibly significant variations that can be

compared with the result of the three time-window inversion.

3.5.2.2 Linear Inversion for Rupture Propagation

The rupture time model from the three-window inversion is shown in Figure
3.15b. The slip model has the same smoothing and boundary conditions as the single-
window model shown in Figure 3.13a; however, the timing of the first window is
determined with a rupture velocity of 2.8 km/s. We define the rupture time in the multi-
window model to be the slip-weighted temporal centroid for elements with slip greater than
1.5 m. In Figure 3.15b this centroid is contoured for comparison with Figure 3.15a.

Based on the sensitivity tests it is difficult to give strong preference to either
rupture time model. It is likely that the single-window method recovers a reliable average
rupture velocity of 2.5 km/s. The results with synthetic data suggest that details of these
rupture propagation images are not particularly reliable due to the strong trade-off between
slip amplitude and rupture time. Recovering the time-dependent behavior of the rupture is
difficult for the Landers earthquake because the large source-receiver distances require
using long-period (= 4 s) waveforms dominated by regional surface waves rather then
body waves. One other lesson from the tests with synthetic data is that the rupture time

details can be recovered if the slip distribution is obtained from independent data.
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3.5.2.3 Features Common to Both Rupture Propagation Models

There are some general features common to both rupture models in Figure 3.15.
Rupture velocity over the Johnson Valley segment in the hypocentral region appears
relatively fast — fast rupture of this segment could have been facilitated by dynamic stress
generated by the immediate foreshock that brought the fault closer to failure as the stress
propagated northward. The transition of rupture from the Johnson Valley segment to the
Homestead Valley segment is essentially the same as in a constant rupture velocity model.

The rupture across the southern part of the Homestead Valley segment is also
similar to a constant rupture velocity model. At the high-slip region on the north end of
this segment, the rupture velocity decreases somewhat, then increases as it propagates
across the region of highest slip. This is somewhat reminiscent of rupture of a high slip
region in the 1984 Morgan Hill, California earthquake [Beroza and Spudich, 1988]. In
both models, the rupture front reaches the northern end of the Homestead Valley segment
at 14 s (the same time as a 2.5 km/s average rupture velocity). The transition of rupture
onto the Camp Rock-Emerson segment, however, is somewhat different.

In both propagation models, rupture on the Camp Rock-Emerson segment initiates
1 to 2 s earlier than the constant velocity model. This means that slip on this segment
occurs at the same time as slip on the adjacent Homestead Valley segment — as though
rupture were occurring on a through-going fault. On the Camp Rock-Emerson segment
the rupture front propagates at a higher velocity at depth than near the surface and ruptures
through the shallow high-slip region from below. This is similar to the behavior of the
rupture front across the high-slip region on the Homestead Valley segment. The
observation that the rupture front slows down as it encounters high-slip regions suggests
that they were relatively further from failure before the mainshock either due to lower pre-
stress, higher strength, or both [Beroza and Spudich, 1988]. Overall, rupture on this
segment is faster in the three-window model (Figure 3.15b), which partially explains the

broader area of large slip amplitude in Figure 3.13b.



Chapter 3 — Rupture of the 1992 Landers earthquake

0

A 2
-6

-9

-12

-15

-18

CRE

23!}

20"

T \l\-_/l T L ]

{1 Optimized rupture time using

linearized inversion method
16

———
1 1

8

M3

737067646158555249464340 373431 28

B)
-6
-9

-12

-15
-18

T

[ Qk-

383532292623201? 1411 8

Vv

T T T i Rl T T

74

0
-3
-6
-9
-12
-15
-18

171411852 -1 -4-7-10

CRE

25
M

T T T Ll T

20

15 y

737067646158555249464340 37343128

R

L L

383532 2926232017

1411 8

T T r T

Rupture time centroid from
three time-window solution

1}
-3
-6
-9
-12
-15
-18

171411 8 5 2 -1 -4-7-10

Figure 3.15. Best-fitting rupture propagation models for Landers mainshock. a) Contours of
rupture time obtained using the linearized inversion and the slip model in Figure 3.13a. Contour
interval is 1 s. b) Contours of the rupture time centroid from the three time-window solution in
Figure 3.13b (for elements with slip greater than 1.5 m).
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3.5.3 Spatial correlation with aftershocks

In this section, the slip distribution is compared with the distribution of aftershocks
occurring on or near the mainshock fault plane. Figure 3.16 shows aftershocks from
Hauksson et al. [1993] located within 2 km (%) of the fault together with the single time-
window slip model.

The Johnson Valley segment has the least slip in the rupture model. The shallow
hypocentral region does not have much in the way of either slip or aftershock activity. It
may be that slip in the immediate foreshock relieved most of the stress in this area. The
Johnson Valley segment is noteworthy in that it has an abundance of larger aftershocks
relative to the other two segments. The correlation between regions of high slip with low
aftershock activity and regions of low slip or of high slip gradients with abundant
aftershock activity, which is seen for many earthquakes [Mendoza and Hartzell, 1988], is
not readily apparent for this fault segment.

The aftershock distribution on the Homestead Valley segment is more diffuse. The
southern Homestead Valley segment shows few aftershocks, no slip in our solutions, and
is the site of the slip gap mapped at the surface. All of these observations suggest that
there was little slip on this part of the fault. North of this, there is an area of concentrated
aftershock activity (17 to 20 km) that is at the southern edge of the high-slip region.
Farther north there is large slip at depth and a diffuse pattern of hypocenters. Because of
uncertainty in aftershock depths it is difficult to evaluate how well the large slip region
correlates with regions of low aftershock activity, but this segment appears to behave more
like other mainshock-aftershock sequences than does the Johnson Valley segment.

The Camp Rock-Emerson fault displays the most convincing anti-correlation of
slip amplitude and aftershock distribution. In the shallow area of highest slip there are few
aftershocks shallower than 6 km over a broad region where the slip maximum is located.
At the northern end of the mainshock rupture (47 to 56 km) there is a great deal of
aftershock activity, consistent with the idea that the stress change induced by the
mainshock is responsible for this activity.

The notion that aftershocks are caused by the mainshock stress change is
qualitatively consistent with the observation that aftershocks occur in regions of low slip
and not in areas of high slip. However, recent observations of the Loma Prieta
mainshock-aftershock sequence [Beroza and Zoback, 1993], which take into account the

sense of slip in the aftershocks, indicate that this hypothesis does not explain many of
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them. In addition, the seismicity triggered at great distances following the Landers
earthquake, for which the static stress change was far smaller than the tidal stresses,
provides further evidence for another mechanism of earthquake interaction [Hill et al.,
1993].

A plausible explanation for both of these observations is that the large transient
stress changes in the dynamic field somehow weaken faults as they propagate through
them. If such stress changes (fractions of a MPa) can trigger seismicity at great distance
following the Landers earthquake, it is reasonable to assume that they can also trigger
aftershocks [Beroza and Zoback, 1993] because the stresses experienced in the near-
source region where aftershocks occur are on the order of the stress drop (i.e., at least
several MPa). The Landers earthquake has given us a unique opportunity to study this
problem because it triggered seismicity over a broad range of distances, from the
mainshock fault plane itself to areas as far away as Yellowstone National Park [Hill et al.,
1993].

3.5.4 Implications for fault segmentation and characteristic earthquakes

The segmentation of faults is an important component of any attempt to anticipate
the size of future earthquakes. Researchers have used geologic maps of fault segmentation
at the Earth's surface to infer that there is similar segmentation at depth [e.g., Schwartz
and Coppersmith, 1984]. The Landers mainshock ruptured at least four previously
identified faults and was a continuation of seismic activity that began approximately two
months earlier with the My, 6.1 Joshua Tree earthquake. The northward progression of
fracture in these earthquakes ruptured faults at the surface that had been thought to be
independent.

In our model of the Landers earthquake, the rupture front propagates through the
intersections of these fault segments with little effect on either the slip amplitude or rupture
velocity. That the Landers earthquake ruptured across several fault segments without
stopping suggests that fault segmentation, at least in its geologic expression at the Earth's
surface, may not be a reliable indicator of the characteristic size of future earthquakes.
Moreover, slip on the Camp Rock-Emerson segment died out in the middle of a straight
segment of the fault, indicating that something other than segmentation was responsible for

terminating the rupture. The Landers earthquake makes evident the inadequacy of relying
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on geologically-mapped fault segmentation alone to anticipate the size of future

earthquakes.

Conclusions

Aftershocks recorded at the TERR Ascope stations are used to identify the passband
over which a 1D velocity structure produces accurate Green's functions. Recordings of
the mainshock in this frequency band are used to estimate slip amplitude and rupture time
for the Landers earthquake. The preferred models with an average rupture velocity of 2.5
km/s are most consistent with near-source seismograms recorded in absolute time and slip
amplitudes mapped at the surface.

The Landers earthquake started slowly with a foreshock approximately 3 s before
the beginning of large-scale failure and grew steadily for over 16 s; the total rupture
duration with the delayed origin time is 22 s, and the total seismic moment is at least
6x10'° N-m. The first 6 s ruptured the Johnson Valley segment with slip above 2 m and
20% of the seismic moment. The Homestead Valley segment ruptured from 5 to 14 s,
producing 50% of the moment and displacements reaching 6 m in a large region that
extends from the surface to the model bottom at 18 km depth. The Camp Rock-Emerson
segment began to rupture at 13 s and contributed the remaining 30% of the total moment
with displacements greater then 6 m in a shallow region that extends from the surface to 9
km depth.

There is evidence for a decrease in rupture velocity as the rupture front encounters
several high-slip regions. As these regions fail, the rupture velocity increases. This
behavior is similar to that observed for the Morgan Hill earthquake and suggests that

heterogeneous pre-stress or strength, or both, are important in controlling rupture.
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4.2 Seismic and Geodetic Observations
4.3 Partitioned Inversion

4.4 Covariance

Abstract

In an earthquake, static deformation of the ground surface is a linear function
of the slip amplitude at each point on the fault, while the near-source seismic
wavefield is linearly related to the slip but nonlinearly related to the rupture
propagation and sliding duration. Because a fundamental trade-off exists between
slip amplitude and rupture time in the seismic wavefield, source models derived
from seismograms cannot separate completely features attributable to each
property, which degrades the model stability. And whereas models derived from
geodetic data can image the final slip amplitude, they cannot resolve temporal
properties of faulting. In this chapter I present a partitioned inversion scheme that
takes advantage of the complementary strengths of each data type: the slip on the
fault is determined from geodetic data and the rupture propagation and slip time-
function are determined from seismic data. Sensitivity tests indicate that
propagation models obtained in this manner are more reliable than those derived
from seismic data alone. In sampling heterogeneous data sets such as this, it is
desirable to know the full covariance and weight the data properly; however, the
theory covariance — the most relevant with seismograms — is difficult to establish.

4.1 Introduction
Spudich and Frazer [1984] demonstrated that two very different rupture models,
one with variable slip velocity and the other with variable rupture velocity, can produce an
identical seismogram at a single observation point. One consequence of this trade-off is

that features in a seismogram caused by rupture time variation can potentially be mapped
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into incorrect slip variations, and vice versa. With a single seismogram it is impossible to
separate these two effects; however, using multiple seismograms, this trade-off can be
greatly reduced. In practice, since portions of the model often exhibit strong dependence
on only the nearest observations, it is difficult to eliminate this trade-off entirely, which is
then manifested as a decrease in the solution's uniqueness.

Stated more formally, the P-wave ground velocity # in the a direction at
observation point x from a dislocation at y with a £, slip-velocity time function can be

written as a line integral over the contours of equal arrival time y(£,x):

a-u(x,n) = F.(1) *j elyx) (5,6, )al @.1)

where s, is the slip velocity (which is approximately proportional to stress drop), and G,

is the Green's function amplitude. The isochron velocity is
-1
c(y.x)=|V 2 (y.x)[ ", 4.2)

and t7(y,x) is the arrival time at x of the P wave from the dislocation at y. The surface

gradient operator is given by

V,=(1-4#)-V, (4.3)

where 7 is the normal to the fault surface and I is the identity matrix [Spudich and Frazer,
1984]. Equation 4.1 illustrates the fundamental trade-off between slip amplitude and
rupture time in the recorded wavefield: observed ground velocity is a linear function of the
slip amplitude (the integral of s,) and a nonlinear function of the rupture time. In other
words, variations in ground velocity can be caused equivalently by spatial variations in s, ,
or by temporal variations in ¢(y,x). In the context of inverting for kinematic models of
faulting, equation 4.1 reveals that features of the slip model may be inappropriately
mapped into rupture time variations, and vice versa, undermining the accuracy of each.
Independent constraints on either part of the fault model will reduce this trade-off and lead

to better solutions.
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Inverse problems using seismograms as data are usually mixed-determined; that is,
some portions of the model are effectively overdetermined and some are effectively
underdetermined. At first glance, this is curious, because there are usually many more
data points than model parameters, so the solution appears overdetermined. The difficulty
arises from the fact that Green's functions from adjacent fault elements can be nearly
identical and almost linearly dependent, and because large parts of the kernel matrix are
sparse.

Because the near-source wavefield is a function of slip amplitude and the slip
history and rupture time of each point on the fault surface, source models derived from
seismic data are only possible if assumptions are made to constrain the trade-off between
the different parameters. The vulnerability of this approach is that the resulting models
unavoidably display prescribed characteristics.

In contrast, the static displacement field (the difference between position
measurements made before and after the earthquake) depends only on the final slip offset
and is not sensitive to the detailed rupture history. Earthquake models derived from
geodetic data are simpler, comprised of fault area and displacement only, and arguably
more stable [Matthews and Segall, 1993; Segall and Du, 1993; Freymueller et al., 1994];
however, by itself this data reveals nothing about temporal aspects of the rupture. Both
spatial and temporal properties of rupture are required for future progress in understanding
earthquake source physics and strong ground motion.

This chapter presents an approach that utilizes seismic and geodetic data in a
manner that takes advantage of their complementary attributes. The inverse problem is
partitioned so that the slip amplitude distribution is estimated from geodetic measurements
and the propagation model is derived from near-source seismograms. The method is
applied to the My, 7.3 Landers earthquake. As in the previous two chapters, the fault
surface is represented by many small elements and a system of linear equations relating
fault slip to surface displacement is solved with a non-negative least squares algorithm.
The optimum smoothing weight is estimated by minimizing the cross-validated sum-of-
squares, and the fault offset at the Earth's surface is incorporated as prior information
[Freymueller et al., 1994]. The resulting slip model is then held fixed in a linearized
inversion for the rupture time (Section 2.3).

Because of the strong trade-off between changes in rupture time and changes in

slip amplitude, it is improbable that temporal details of propagation can be recovered from



Chapter 4 — Complementary inversion for earthquake rupture... 82

seismic data alone. If the slip amplitude can be determined accurately from independent
information, then the propagation details can be imaged with much greater accuracy from
the seismograms. This conclusion is demonstrated in Section 2.5.3, where a linearized
inversion method is used to recover rupture time for different assumed slip models. The
key result of this test is that if the correct slip distribution is used, the rupture time model
can be recovered with impressive accuracy. The bottom of Figure 2.9 illustrates this
result. It is not surprising that sensitivity tests confirm that the partitioned inversion yields
more accurate rupture models than one based only on seismic data. What is more
important, and less obvious, is that rupture propagation models derived from seismic data
can be extremely unreliable.

In the linearized inversion, the rise time (duration of the triangular displacement
source function) is assumed to be shorter than the shortest periods contained in the
seismograms (in the present case, 4 s). The greatest source of error in the linearized
inversion likely arises from errors in the theoretical Green's functions (the forward
problem). The associated covariance is unknown and impossible to derive analytically,
but the Green's function uncertainty can be estimated by how well aftershock waveforms
can be fit with point-source dislocation models (Section 3.3). Using this approach, we
can obtain some idea of the degree to which mainshock seismograms should be fit over a
specific passband; this tolerance is the convergence criterion applied in the linearized
inversion. A more complete discussion of how covariance can be incorporated is set forth
in Section 4.4.

Most features of the geodetic slip model show good agreement with models
derived from seismic data alone — although the slip at depth is smoother and the moment is
uniformly larger (Section 3.5.1). The linearized inversion is used to find the best-fitting
(in a least-squares sense) propagation model. The preferred model shows a decrease in
propagation velocity as the rupture front encounters high-slip regions which suggests that
pre-existing variations in stress or strength on the fault, or both, are important in

controlling rupture dynamics [Boatwright and Cocco, 1995].

4.2 Seismic and Geodetic Observations
All known earthquakes with significant near-source seismic and geodetic
observations are listed in Table 1.1. The Landers earthquake is the largest for which there

are both numerous strong-motion seismograms and geodetic measurements. It is no
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surprise that all events in Table 1.1 occurred during the last three decades. This period
saw the development of the Global Positioning System (GPS) and improvements in the
precision of distance ranging instruments allowing relative displacements to be measured
with sub-centimeter and sub-millimeter accuracy, respectively. Concomitant with these
technical developments has been an increased surveying effort [e.g., Freymueller et al.,
1994]. Seismic data sets are also improving because of technical developments (e.g.,
digital accelerometers) and the continuing deployment of modern instruments. Most well-
recorded earthquakes have occurred in California (Table 1.1), where much of the seismic
and geodetic field effort is focused.

The quantity of near-source seismic and geodetic observations for an earthquake of
the size and duration of Landers is unprecedented; a few other earthquakes are similarly
well-recorded (e.g., Loma Prieta, Northridge, Kobe), but none have comparable area and
rupture duration. The quantity of data and the size of the earthquake provide a new
opportunity to exploit each data type in a manner that takes better advantage of their
particular strengths and provides an opportunity to obtain a higher-resolution image of an
earthquake.

For example, consider the M, 6.7 Northridge earthquake, which occurred in urban
Los Angeles county in 1994. Ground motions from this event were measured by many
seismic and geodetic instruments (Table 1.1). The area of the fault plane was
approximately 140 km? and the rupture duration was roughly 7 s [Wald and Heaton,
1994b]. In comparison, the Landers earthquake had dimensions of ~1000 km? and a
rupture duration of 24 s [Cohee and Beroza, 1994a]. During this 24 s period the
dislocation propagated across a series of right-stepping fault segments over a distance of
70 km, in total spanning four previously identified faults. Perhaps most importantly, the
fault plane broke the ground surface over its entire length, providing an important
additional constraint on models of the earthquake.

Time-varying ground motion was recorded in the near-source region by eighteen
seismometers shown in Figure 2.3 and listed in Table 3.1. The acceleration and velocity
seismograms were integrated to displacement and are shown in Figure 3.3. These
recordings comprise the seismic data used in this chapter and are described in Section
3.2.2. With these seismograms, we can image slip on the fault if we make assumptions
about the direction of slip, velocity structure, rise time, and rupture propagation (Chapter
3).
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The co-seismic displacement field at the Earth's surface is found by differencing
pre- and post-earthquake measurements. Ideally the pre-earthquake measurements are
made immediately before the event, but inevitably there is some time interval before the
event occurs and it is necessary to correct the measurements to remove interseismic
deformation. In the region surrounding the Landers fault, several different groups had
surveyed various portions of the area using electronic distance meter (EDM) and GPS
equipment in the few years preceding the mainshock. The differenced GPS measurements
provide co-seismic displacement vectors and the EDM measurements allow line-length
changes to be resolved. Because of the redundancy of the measurements, the associated
errors can be determined, which, in turn, provides an estimate of the data covariance. A
comprehensive discussion of this data is presented in Freymueller et al. [1994] and
Hudnut et al. [1994].

4.2.1 Seismic Inversions

Two models of the Landers slip distribution obtained from seismic data are shown
in Figure 3.13, and the corresponding fits to data are shown in Figure 3.14. The first
model assumes a constant 2-s rise time everywhere on the fault; with this assumption we
find a best-fitting constant rupture-velocity model (Figure 3.15a). The second approach
permits variable rupture velocity by allowing slip to occur in three time-windows; the time-
centroid for each element of the fault is contoured in Figure 3.15b.

The two solutions have important differences (Section 3.5.2) and each method has
strengths and weaknesses (Section 2.5.3). Most importantly, the constant rupture velocity
model cannot recover rupture velocity variations but is very stable; the three-window
model contains velocity variations but is much less reliable.

The stability of each method is best illustrated by tests using synthetic data (Section
2.5.3) — the ability to recover an input slip and rupture time model is indicative of the
resolution expected with real data, and artifacts found may also occur with recorded
seismograms. The constant rupture velocity found with the one-window inversion is the
correct average of the input model, but temporal details are not recovered. The three-
window inversion returns a variable rupture velocity model, which appears more realistic;

however, errors are introduced to compensate for the mislocated slip.
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4.2.2 Geodetic Inversions

Co-seismic measurements of the horizontal displacement field allow independent
estimation of the Landers slip distribution [Freymueller et al., 1994]. Slip is constrained
to be right-lateral and the fault offset at the surface is used as prior information. The best-
fitting slip model for the same fault geometry as that used in the previous chapters
(described in Section 3.2.1) is shown in Figure 4.1, and is very similar to the model
presented in Freymueller et al. [1994). The geodetic slip model in Figure 4.1 is also
similar to the seismic models shown in Figure 3.13, but has uniformly larger amplitudes
(the geodetic moment is 9.8x10!° N-m). The corresponding fit to 38 GPS displacement
vectors and 58 line-length changes is shown in Figure 4.2 (only the data closest to the fault
is shown). For display purposes, the line-length changes are used to determine
displacement vectors in the GPS coordinate system [Segall and Matthews, 1988]. When
modeling the geodetic data, we must recognize that the measurement error is very
heterogeneous.

Ninety-five percent confidence ellipses are shown for each datum in Figure 4.2.
The error at sites for which there was only single-frequency GPS measurements prior to
the earthquake (open circles) are much greater than those with dual-frequency
measurements (filled circles); line-length changes measured with EDM (triangles) have the
smallest measurement error. The geodetic data covariance can be estimated from the
errors, which allows the data to be weighted properly in the inversion. At each site, the

model fits the observation to within the resolved tolerance.

4.3 Partitioned Inversion

In the partitioned inversion, the geodetic slip model (Figure 4.1) is assumed and
the seismograms comprise the data in a linearized inversion to image details of the rupture
propagation. Measurement error in seismic data is believed to be much smaller than error
in the theory introduced by inaccurate Green's functions, but neither source of error is
easy to measure. The degree to which mainshock seismograms should be matched is
approximated by measuring the misfit of aftershock seismograms modeled with the same
theoretical Green's functions (Section 3.3). Unfortunately, aftershock recordings are only
available at four sites; however, they span the azimuthal range of the entire data set and are

representative of the propagation paths for all stations.
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Figure 4.1. Slip amplitude distribution derived from geodetic measurements for the fault
geometry described in Section 3.2.1. The cross section extends vertically from the surface to a
depth of 18 km and the view perspective is looking east. The three segments represent the
Camp Rock-Emerson, Homestead Valley, and Johnson Valley faults. Each segment is
comprised of 3x3 km?2 fault elements. Displacement is constrained to be right-lateral and the
surface offset is assumed as prior information. The peak amplitude is 11 m and the total moment

is 9.8x1019 N-m.
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Figure 4.2. Fit to the observed horizontal displacements using the slip model from Figure 4.1.
The 95% confidence ellipses are shown (dotted) for each datum and the corresponding model
predictions are the vectors without an error ellipse. A 2 m displacement vector is plotted for
scale. Dual-frequency GPS measurements are shown by filled-circles, single-frequency
measurements are shown by open circles, and line-length changes are shown by triangles (for
display purposes, the line-length changes are used to determine displacement vectors in the
GPS coordinate system). Measurement errors associated with single-frequency receivers are
greater than those with dual-frequency receivers; line-length changes have the smallest error.
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The inversion procedure for determining the rupture propagation assuming a slip
distribution is described in Section 2.3. In the present example, the starting rupture model
has a constant velocity of 2.5 km/s and produces a negative variance reduction (-15%).
This poor fit to the seismograms emphasizes the trade-off between slip amplitude and
rupture time that exists in the Chapter 3 solutions (2.5 km/s is the best average rupture
velocity when slip is the model parameter). In the present case, this starting model was
perturbed until the variance reduction reached 24%, which was the level of fit obtained
when the aftershocks were modeled (Section 3.3). This new rupture propagation model
exhibits characteristics that appear correlated spatially with regions of large slip; for
example, in some areas the propagation velocity decreases as the rupture front encounters a
high-slip region.

Contours of the rupture time obtained with the linearized inversion are shown in
Figure 4.3 together with the assumed slip model. The rupture model has two noteworthy
features. First, the mainshock rupture appears to have originated in two separate locations:
the first begins at O s at the same location as the M 5.6 foreshock that occurred at -3 s (the
high-frequency origin time — described in Section 3.2.1), the other begins at 1 s about 7
km to the north. If this rupture model is correct, it is more likely that this second location
was a continuation of the dynamic process that began 4 s earlier in the foreshock (implying
a slow rupture velocity of about 2 km/s) than it was a result of supersonic rupture that
began at the origin time (t = 0). This interpretation is consistent with recent evidence that
earthquakes begin slowly, which is characterized by low rupture velocity, low stress drop,
or both (Chapter 6).

The second interesting feature is a deceleration of the rupture as it meets with the
shallow high-slip region on the Camp Rock-Emerson segment. This observation is
consistent with the idea that regions of high-amplitude slip during faulting have greater
strength excess prior to the earthquake [Quin, 1990; Mikumo, 1992].

Both propagation features are required by the seismic data when the geodetic slip
model is assumed. This is shown in Figure 4.4, where the mainshock seismograms are

plotted with the model predictions for both the starting model and the final rupture model.
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Figure 4.3. Rupture propagation model obtained from the near-source strong-motion
seismograms (bottom) assuming the slip model (top) obtained from linear inversion of the
geodetic observations. This slip model is the same as that shown in Figure 4.1 and is plotted
here for comparison with the propagation model. The contours of slip show right-lateral
displacement in m (meters) and the rupture time contour interval is 1 s.



90

Chapter 4 — Complementary inversion for earthquake rupture...
North-South East-West Vertical
PAS ——Afe—  ——~ AR
POM e

mainshock seismograms
90s e constant rupture velocity (starting model)

linearized inversion

Figure 4.4. The fit to mainshock displacement seismograms (black) using two different models of
rupture propagation: the starting model (constant rupture velocity — dashed) and the model
from inversion (gray) that is shown in Figure 4.3. Mainshock seismograms are plotted for three
components of motion at the eighteen stations shown in Figure 2.3 and listed in Table 3.1.
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4.4 Covariance

Seismologists use traveltimes and waveforms as data to estimate Earth structure
and earthquake source processes. In some cases, uncertainty in the measurement process
(measurement error) is taken into account; however, this component of error is often a
small fraction of the error introduced by inadequate theory used to define the forward
problem (theory error). Inversion for fault models using waveforms is one important
example of where this situation exists. Unless errors in the theory are accounted for in
these problems, data weighting will be suboptimal and estimates of the uncertainty of the
models will be unreliable. If the covariance is not known, the uncertainties and
correlations in the data are unknown and can only be accounted for in an ad hoc fashion
(e.g., data winnowing, amplitude normalization, etc.). Moreover, when these effects are
not taken into account, the best estimate of the model (and the estimated uncertainties) are
compromised.

Determining a full covariance matrix can be difficult. If the variance associated
with each datum is known and uncorrelated with other data, the covariance is diagonal
with elements equal to the reciprocal of the variance. A more demanding task is finding
the correlations, for which the covariance matrix has non-zero off-diagonal terms.

Because the high dynamic range of modern seismographs allow low noise
recordings of strong ground motion, measurement error over most of the seismic
bandwidth is usually small. Most of the error in fitting waveforms arises from the
inaccuracy of theoretical seismograms resulting from a buried point source in an idealized
Earth model; this is an inevitable consequence of our incomplete knowledge of Earth
structure. Additional error in the theory is introduced by the idealized fault geometry and
its discrete representation.

In earthquake source inversions, error in the theory is most relevant and at least an
order of magnitude larger than measurement error. A similar situation exists in the
earthquake location inverse problem: error in the theory used to solve the forward
traveltime problem is much larger than measurement error associated with picking an
arrival time [Tarantola and Valette, 1982].

In the absence of the true covariance, we must make assumptions to weight the
data. For instance, when certain regions at the surface have greater station density than
others, seismograms are removed to avoid biasing the solution with an overabundance of

data that may contain correlated errors. In some extreme cases, seismograms are given
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greater weight if they are modeled successfully in preliminary analysis. These common
practices have undesirable attributes: some of the data is not used, correlations in the data
are unaccounted for, and the significance of error mapped into the solution is unknown.

These weighting practices are unsatisfactory for three reasons. Most importantly,
since statistical properties of the errors are unknown, the optimal solution is not found.
Second, it is not possible to use all data or to know how well it should be fit in the
inversion. Third, since there is no method in place to evaluate error in the theory, it is
difficult to ascertain which velocity model produces the most accurate Green's functions
(Section 3.3).

Implicit in the above discussion is the assumption that the true covariance is only a
function of data covariance (derived from the measurement error ) and theory covariance
(derived from error in the theory). In the most general case, the total covariance is a
combination of data, theory, and model covariance. Model covariance, C,_, describes
uncertainty of model parameters. It can either be found a posteriori from propagating the

data covariance into the model covariance, i.e.,
-1
C,=(G"C;'G)", (4.4)

or it can be assumed a priori. Since we lack information about relative uncertainties of
different model parameters, it is reasonable to assume that the a priori model covariance is
an identity matrix. A better approach is to use the geodetic data to find a slip model and its
associated a posteriori model covariance, which could then be used in the inversion of
seismic data.

To clarify the role of covariance weighting, we might consider the case of the
general linear inverse problem. For the linear theory Gm = d, Tarantola and Vallette
[1982] used a statistical approach to express the contribution of different errors on the total
covariance. The probability distributions for the three sources of error are assumed to be

Gaussian, so in each case the mean and associated covariance describe the probability:

P,(m)e< expl:—%(m ~(m)) C;) (m- (m))} (4.5)

Py (d) = exp{— % (d-a )T C;'(d-d™ )} (4.6)
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where m is the estimated model, (m) is an a priori model, and C, is the model

covariance. Similarly, d°™ is the measured data, d is the true data, and C, is the data
covariance; G is the kernel matrix that contains the forward theory, and C; is the theory
covariance [Menke, 1984]. The subscript A means a priori. The total probability is the
product of these three distributions, which is also Gaussian distributed [Tarantola and
Vallette, 1982]. Using a maximum likelihood approach, we can express the model

estimate as

th = (m) + G ¢[d"™ - G(m)| = G"#d"™ +[I- R](m) (4.8)
where,
G#=C,G"[C,+C+GC, G| 4.9)

and R is the resolution matrix [Menke, 1984]. If we do not have an a priori estimate of

the model parameters and model covariance, we assume that C,, = o> I, where o® = oo

(that is, the prior model has zero weight in the estimate). Likewise, if we do not know the
data covariance, then C; =0 (the data contains no error). If, however, geodetic data is

available, the geodetic model and associated a posteriori model covariance (equation 4.4)
can be used as the a priori model estimate and model covariance in a seismogram
inversion.

The theory covariance, C;, describes the magnitude of error in the seismic theory
and their correlations. It should be possible to estimate this covariance if there are
recordings of aftershocks from all areas of the fault at each of the seismometer sites. To
derive C; it is necessary to (1) estimate the theory error for each seismogram, (2) the
correlation between the different seismograms, and (3) the correlation between points
within each seismogram. The covariance can be written as Cy = g,0,C, where C is a
symmetric correlation matrix with unity on the diagonal, off-diagonal elements between 1

(perfect correlation) and -1 (perfect anti-correlation), and 0,0, are the standard deviations
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of the ith and jth points in the seismogram (where i and j are the row and column indices of
C, respectively). The correlation matrix describes how errors are correlated within a
seismogram, between different components, and between different stations.

The seismic wavefield in the near-source region is a mixture of direct P and §
waves, surface waves, layer reverberations, scattering directly beneath the recording site,
and energy scattered from velocity heterogeneities along the source-receiver propagation
path. The significance of these different contributions, and the corresponding accuracy
contained in synthetic seismograms, is a function of both frequency and time. The
variances can be estimated by measuring the misfit between earthquakes of known
mechanism and location and theoretical point-source seismograms. If recordings existed
for every element of the discretized fault plane, it would be possible to compare the
spectrum of the recordings with synthetic seismograms which would provide a measure of
the frequency dependence of the error. If the event was recorded on all three components
of motion, the correlated errors could be estimated. Similarly, if the event was recorded
by multiple seismometers, correlations between components at different stations could be
found. Since the error would exhibit strong frequency dependence (Figure 3.5), the misfit
measurement and following covariance would naturally be represented in the frequency
domain. To be used in the inverse problem, the data and theoretical seismograms would
also be expressed in the spectral domain [Mendez et al., 1990; Cotton and Campillo,
1995].

This approach has not yet been fully implemented in the analysis of an earthquake
because the data (co-located earthquake seismograms) do not exist in sufficient quantity.
There is, however, a growing awareness of the importance of co-siting instruments in
aftershock deployments and in the use of higher dynamic range recording systems. Thus
it is likely that in the future we will be able to determine theory covariance from

microearthquake recordings.
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Conclusions

The seismic wavefield is sensitive to both slip distribution and rupture propagation,
whereas the static displacement field is only sensitive to the slip distribution. A partitioned
inversion scheme is presented that takes advantage of the complementary nature of the two
data types — the geodetic data is used to determine slip on the fault and the seismic data is
used to image the propagation and slip history. Sensitivity analysis suggests that rupture
propagation models obtained in this way are more reliable than those obtained using
seismic data alone. A rupture model with a constant 2-s rise time and relatively simple
rupture propagation fits both the seismic and geodetic data to within their estimated
tolerances. In sampling heterogeneous data sets such as this, it is desirable to use the
covariance to weight the data properly. Using the seismograms, we find that the theory

covariance is most relevant, but difficult to establish.
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Abstract

Characteristics of high-frequency wave propagation through the Earth are
contained in recorded seismograms. In contrast, theoretical seismograms
calculated for idealized Earth models are approximations with errors that increase
with frequency. In practice, recorded seismograms are problematic as Green's
functions because in addition to wave propagation, they also include effects due to
source location, mechanism, and size, as well as the instrument response. In this
chapter, an inversion method that overcomes these difficulties is tested using
aftershocks of the 1989 Loma Prieta, California, earthquake. The solutions fit the
data reasonably well but are unable to predict missing seismograms as measured by
cross-validation statistics. Two possible explanations for this result are (1) that the
quantity of data is insufficient to describe the model (a site transfer-function)
adequately, or (2) that errors in the source parameters (used to correct the
seismograms) are tco large to allow accurate solutions. Removing insignificant
eigenvalues from the data emphasizes the site response and suppresses the source
and path effects, thereby improving the cross-validation result; however, this filter
also removes the highest frequency energy, which undermines the model's
usefulness. In summary, cross-validation is an excellent method for evaluating
model stability in complex inverse problems where data and model covariance are
not known beforehand; the tested characterization of the site response is inadequate
for Green's function interpolation using these data; and eigenvalue filtering is an
efficient method for enhancing wave propagation effects occurring near the site.
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5.1 Introduction

A critical ingredient in any inverse problem is the accuracy of the physical theory,
or forward problem, that relates the observations to the model. When the inversion seeks
a faulting model using near-source seismograms as data, the forward problem is the
summed response of numerous point-source dislocations on a planar fault observed at
discrete locations (seismometer sites) on the Earth's surface. The Earth response to an
impulsive point source is termed the Green's function. In principle, theoretical Green's
functions can be computed using arbitrarily complex models of the Earth, but in practice
the structure is rarely known with enough detail to produce accurate waveforms at shorter
wavelengths. Moreover, computational requirements become increasingly formidable as
wavelengths decrease in heterogeneous three-dimensional (3D) velocity models. In the
words of Spudich and Archuleta [1987],

For the modeling of observed earthquake seismograms, or for prediction of
ground motions in a specific region, the first factor limiting the accuracy of any
Green's function calculation is simple ignorance of the earth structure at the site.
In order to calculate Green's functions accurately at 5 Hz for a particular region, it
is necessary to know the 3D shear-velocity structure on a scale of a few hundred
meters both horizontally and vertically. Since such detailed knowledge of the
earth's velocity structure may not be available in the near future, calculations of
ground motions for real world situations are predestined to have errors.

Because theoretical Green's functions contain appreciable error at high frequencies,
accurate prediction of the ground motion from a point source is inevitably bandlimited (in
the forward problem) and it is thus impossible to recover short-wavelength faulting
properties (in the inverse problem).

An alternative approach recognizes that at each seismometer only a portion of the
velocity structure affects the wavefield, so that knowledge of the complete 3D structure is
unnecessary. For each source location, the Earth response is required only at specific
stations; hence, recorded seismograms from small earthquakes (small enough to appear as
a point source) can be treated as empirical Green's functions [Hartzell, 1978]. Because of
their accuracy at short wavelengths, empirical Green's functions have the potential to
resolve more detailed properties of the earthquake than are possible with theoretical

Green's functions.
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Seismograms of small earthquakes (usually aftershocks) include the complete high-
frequency response of the Earth. Unfortunately, they also include the instrument
response, effects due to variable source mechanism and size, and they unevenly sample the
volume of interest — in fact, areas of a fault plane with the largest slip amplitudes are
typically the areas with the fewest aftershocks [Mendoza and Hartzell, 1988]. At near-
source distances, these various effects in the recorded seismogram must be removed
before they can be employed as Green's functions; in practice, this is a difficult task. As a
result, empirical Green's functions have mostly been used in simple ways [Hartzell, 1978;
Kanamori et al., 1992], and most successfully for long distances and low frequencies
where corrections to the recordings need only be approximate [Ammon et al., 1993;
Dreger, 1994b].

One procedure for addressing these difficulties is an interpolation method that
accounts for known variations in the location, mechanism, and magnitude of the small
earthquake, and solves for a site transfer-function that is represented as a time-varying
response with simple dependencies on azimuth and incidence angle [Spudich and Miller,
1990]. Small earthquakes are assumed to be point sources for frequencies below the
corner frequency. If the model can predict missing data (the definitive test of any
interpolator), then it can be used to calculate the response of dislocations with arbitrary
mechanism for any location within the sampled volume (the variance can be derived from
the misfit of the omitted seismograms). The interpolated seismograms can be used to
analyze high-frequency ground motions from large earthquakes in the same volume, which
has the potential to improve the accuracy and resolution of the faulting models greatly.
Since the Spudich and Miller [1990] procedure is formulated as an underdetermined
inverse problem, it is particularly important that the validity of each model is established
prior to its use in calculating Green's functions for analysis of mainshock seismograms.

In this chapter, we use aftershocks of the My, 6.9 1989 Loma Prieta earthquake to
find a site transfer-function model for an incident § wave at five seismometer sites. A
more accurate and reliable slip distribution and rupture time model of this earthquake is
important for assessing the potential for future earthquakes, and anticipating the severity of
strong ground motion in them. The validity of the result is measured by the model's
ability to reproduce individual aftershock seismograms that are removed from the data set,

one at a time — a robust model should not depend heavily on any one datum (seismogram).
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A cross-validation approach is used to measure the model's ability to predict each deleted
seismogram and the weighted residuals are summed.

For the five locations examined in this study, cross-validation shows that the
solutions exhibit strong dependence on individual seismograms and should not be used to
interpolate Green's functions. In an effort to improve the models, we gathered aftershock
seismograms for each station in a matrix and decomposed them into eigenvalues and
eigenvectors using a singular value decomposition (SVD), and then reconstructed them
using only the most significant eigenvalues (determined with a F-test). This filtering
procedure has several attributes, but, most importantly, it retains common features in the
seismograms, which emphasizes the site-response, and suppresses uncommon effects that
are mostly attributable to differences in the propagation path and source. The greatest
shortcoming of the filter is that the reconstructed seismograms (and hence the site transfer-
function model) contain less energy at high frequencies. The inversion results obtained
with the reconstructed data yield smaller cross-validation residuals, but their usefulness for

interpolating Green's functions is weakened by the loss of the high-frequency signal.

5.2 Loma Prieta Aftershock Seismograms

The Loma Prieta earthquake occurred in a region that was densely instrumented
with strong-motion accelerographs operated by the U.S. Geological Survey, the California
Division of Mines and Geology, and the University of California at Santa Cruz. After the
earthquake, three-component seismometers were co-located at accelerograph sites that
recorded the mainshock; this deployment provided the aftershock seismograms used in this
study. In choosing specific sites for the deployment, the scientists had three stated criteria:
first, to instrument areas that experienced damage in the mainshock; second, to co-locate
instruments with strong-motion accelerographs that recorded the mainshock; and third, to
obtain uniform spatial coverage [Mueller and Glassmoyer, 1990]. The purpose of co-
locating recorders at strong motion sites was to obtain aftershock seismograms that could
be used as empirical Green's functions to model the mainshock strong ground motions.
At twenty-one locations seismometers were installed adjacent to the strong-motion
accelerometer that recorded the mainshock. The typical instrument package consisted of a
six-channel GEOS system recording three-components from a Mark Products L-22D 2-Hz
velocity seismometer and three-components from a Kinemetrics FBA-13 accelerometer,

both at 200 samples/s [Mueller and Glassmoyer, 1990]. Gains were adjusted to maximize
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the range of ground amplitude recorded on-scale: the velocity instruments were set to
record the smaller aftershocks and the accelerometers were set to record the larger
aftershocks.

The Spudich and Miller [1990] interpolation method requires dense sampling of the
aftershock volume. Unfortunately, many sites were occupied for less than a week and did
not record a sufficient number of events. The seismometer should be close to the
earthquake to minimize complex propagation effects due to refractions and P to §
conversions. For a small earthquake to be treated as a point source, it must have a corner
frequency above the highest frequency of interest; in the present study, that meant using
aftershocks of magnitude less than 4 and frequencies less than 3 Hz. There were five
seismometer locations with an adequate number of recordings. The locations of the
stations and aftershocks, and a discrete representation of the Loma Prieta mainshock fault
plane [Beroza, 1991] are shown in Figure 5.1. The station characteristics are listed in
Table 5.1. Two different cross sections of the fault grid, aftershock locations, and the five
stations are shown in Figure 5.2. Only the non-zero elements (1x1 km?) of the Beroza
[1991] fault model are displayed. Our ultimate goal is to derive interpolated Green's
functions for every element at each seismometer. We only use aftershocks occurring very

near the fault plane — unfortunately, there are large areas of the fault with no recorded

aftershocks.
Table 5.1. Co-located Seismometer Stations
Code Location Latitude ("N)  Longitude W) Events (#)
CAP Capitola 36.9740 121.9522 24
DMD  Anderson Dam 37.1642 121.6314 35
GA2  Gavilan College 36.9731 121.5680 27
KOI1 Corralitos 37.0462 121.8031 107
SAR Saratoga 37.2553 122.0311 73

In summary, the number of aftershocks available at a particular station is limited by
the deployment duration, the subset of aftershocks occurring on or directly adjacent to the

mainshock fault plane, and the noise characteristics of each site (a high noise level can
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Figure 5.1. Map view of the Loma Prieta study area showing the mainshock fault plane [Beroza,
1991], the five co-located seismometers, and the aftershocks they recorded. The seismometers
are shown by inverted triangles and the aftershocks by open circles. The fault plane strikes 130°,
is 40 km long and 14 km wide (spanning 5 to 18 km depth), and dips 70° to the SW. Note that
the stations have good azimuthal range and are within 25 km of the fault.
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Figure 5.2. Two cross sections of the fault zone showing the aftershock locations and five
stations used in the study. The first view (top) is looking N50°W (310°), along the strike of the
fault. The second view (bottom) is looking N4Q°E (40°) perpendicular to the fault strike. Note
that some areas of the fault have no aftershocks recorded by the five seismometers; it is in
these areas where the interpolation method is most severely tested.
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dwarf the signal of small events). We use smaller aftershocks (M < 4) that look like point
sources and bandpass filter the seismograms with corners at 0.2 and 3.0 Hz. The high-
pass corner at 0.2 Hz is used to minimize low frequency noise that is amplified when the
seismograms are integrated to displacement. In theory (infinite bandwidth), the doubly-
integrated acceleration seismograms should be identical to the singly-integrated velocity
waveforms; however, in practice (finite bandwidth), the singly-integrated velocity
seismograms were found to be more stable in the 0.2 to 3.0 Hz passband (probably
because of the narrowband response of the velocity instrument which is less sensitive to
energy at frequencies below 2 Hz). No correction was made to remove the instrument
response, so the model seismograms implicitly contain it. The waveforms are first aligned

at the S-wave arrival and then integrated to displacement.

5.3 Green's Function Interpolation Method

Repeated earthquakes occurring in the same location with the same focal
mechanism (e.g., doublets) produce seismograms that are strikingly similar even at high-
frequencies [Geller and Mueller, 1980; Poupinet et al., 1984; Frémont and Malone, 1987].
This reproducibility of the wavefield demonstrates the ability of empirical recordings to
characterize accurately the Earth response to an earthquake [Hartzell, 1978]. The
earthquake magnitude (and fault area) need not be identical as long as the corner frequency
is greater than the highest frequency energy in the seismogram. Of course, this Green's
function characterization is only appropriate for the specific source location and
seismometer site and the particular focal mechanism; this is where difficulties arise.

First, there are not recordings of sources for all desired locations. Second, it is
difficult to remove completely the effect of the radiation pattern: all focal mechanism
estimates contain errors, and even when they are very small, the amplitude modulation
predicted for a double-couple dislocation model breaks down at higher frequencies because
of complex scattering and diffraction by small-scale heterogeneities, particularly those in
the near-surface geology [Liu and Helmberger, 1985; Vidale, 1989; Bonamassa et al.,
1991].

Given the aftershock and station coordinates, the mechanism and magnitude, and a
layered velocity model, it is theoretically possible to correct the recorded seismogram and

remove these effects. After these corrections are made, all that remains are effects due to
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Figure 5.3. Schematic illustration of the forward model showing cross section of the Earth with
four aftershocks and one seismometer located on a shallow low-velocity basin. The Spudich and
Miller [1990] algorithm, as applied in this study, corrects the seismograms for the aftershock
location, magnitude, and mechanism, and ignores path effects due to wave propagation away
from the site. The model maps differences in the corrected seismograms into a site transfer-
function that represents common scattering and propagation effects caused by small-scale
velocity heterogeneity at the site (adapted from Spudich and Miller [1990]).
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the propagation path, in particular those at the site where the velocity heterogeneity is
greatest. This approach is schematically illustrated in Figure 5.3.

Spudich and Miller [1990] solved for a site response that is a function of azimuth
and time. To model the angular dependence of the site, they set up an equivalent force and
moment system at the receiver that is excited by incident P and S waves — the time
dependence of the site response is modeled using the time dependence of the force and
moment-tensor elements. In this approach, each horizontal component at each station is
treated separately. The S-wave arrival and coda is windowed and corrected for source
mechanism, magnitude and traveltime. A system of linear equations is written as an
underdetermined inverse problem where the model is a time-varying transfer-function with
cos0 and cos260 dependencies on azimuth and incidence angle. Equation 17 of Spudich

and Miller [1990] summarizes the forward model:

M;'U, (&, :q) =
—Q[a ' RID; F (&, t—17)+ o7 RED, M (€, 1~ 1) (5.1)

ijk

+ BRS S"IF"'(f,t—ts)+ﬁ_1R;kD;1M},'€"(§,t-tx)]

where M, is the seismic moment, U, (&, #;q) is the m component of velocity observed at
& from a traction q at time ¢. Q, is a term that accounts for the geometry of the
dislocation, the fault orientation, and the azimuth and take-off angle to the receiver defined
as

0, =n(d-t)+d(-F) (5.2)

1

where d is the dislocation direction, F is the tangent to the ray path, and n is normal to the
fault surface. The scalar variables ¢ and f3 are the P- and S-wave velocities. The R
terms describe the P- and S-wave radiation pattern of the aftershock, and are defined by
equations 10 through 13 in Spudich and Miller [1990]. Dp and Ds are P- and S-wave
amplitude terms that describe the amplitude decay as a function of the source and receiver
velocity and density, and the source-receiver distance.

Equation 5.1 follows from the underlying premise of Spudich and Miller [1990],

which can be written
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U= F*Gy+ My*Gy,. (5-3)

This equation states that the observed displacement U is the sum of a three-component
body force vector F(t) and a moment tensor M(t) with six independent elements, each
convolved with the point-force Green's function Gjj. In other words, the method
assumes that away from the site, the velocity model is smoothly varying and may be
described by ray theory Green's functions in a layered velocity model. Near the surface,
the Earth is assumed to be more heterogeneous, producing complex propagation effects at
the site. These complex effects are represented by the three force and six moment tensor
terms, which are time-varying and together represent the site transfer-function. The force
terms have cos0 angular dependence, and the moment tensor terms have cos20 angular
dependence. This representation of the site transfer-function is not motivated by observed
site response behavior; rather, it is a generalization based on a form of the representation
theorem that states that the traction response across the fault due to a single impulsive
point-force at the observer can be used to calculate seismograms due to slip on the fault.
For one data seismogram and one source term, Equation 5.1 can be rearranged into

the form:

aq 0 -0
- 10 4 - 0] . )
UC.wa)| |, 0 4 O . ol||F(&n)
UEna)| [0 b o - 0|[Fi(é.1)
u(é, 75q) [=|0 0 F (&)
: 0 : (5.4)
U t5q)| | % Fl(é’tN)J
L 1. .
0 b

where a; = —Q,.a‘lRij’ D: and b, = —Qiﬂ”R‘.jD; ' [Spudich and Miller, 1990]. If equation
5.4 is written as Uj=A11 W, then an equation with multiple data seismograms and source

terms is
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U1 A11 A12 A19 Wl
Uz A21 Azz A29 Wz

> (5.5

UN ANI AN2 AN9 W9

or, more simply, U= AW. Since each of the nine source terms W are time varying, the
total number of unknowns is 9M, where M is the number of samples in the seismograms.
The total length of the data vector U is NM, where N is the number of seismograms.

Equation 5.5 is written for a single scatterer, but it is straightforward to extend the
system to include multiple scatters [Spudich and lida, 1993]. The multi-scatterer inversion
has more severe problems with underdeterminacy — the model has enough freedom to
match each seismogram almost exactly, but the model variance is large.

To minimize the resolution-variance trade-off, we use only one scatterer located at
the seismometer. The stability of the model is evaluated by measuring cross-validation
residuals: removing one seismogram at a time, solving for a model using the remaining
data, computing the model prediction for the omitted seismogram, and measuring the

misfit.

5.4 Evaluating Models Using Cross-Validation

All inversion methods involve minimizing the misfit between observations and the
synthetic data predicted by a model. The data variance is a measure of how well the
measurements are fit and the model variance is a measure of the model's stability.
Increased model variance implies increased model uncertainty; large changes in the model
have small effect on the data misfit. In some cases, when the model is a linear function of
the data, it is possible to express the model variance in terms of the data variance [Menke,
1984]. When the model and data are nonlinearly related, it is difficult to establish a direct
relationship between the model and data variance. Fortunately, it is always possible to use
a resampling approach to estimate model variance for nonlinear inverse problems.
Resampling methods substitute raw computing power for theoretical analysis and can be
routinely applied to arbitrarily complex nonlinear problems. The procedure is based on the
idea that the given data set can be resampled multiple times forming multiple independent

data sets. For each sample, a new model is found and the model variance is derived from
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the ensemble of new models. The underlying philosophy in this approach is that statistics
of errors in the data can be represented by variations in the data themselves.
Cross-validation is one widely-used resampling method [Wahba, 1990]. With this
method each datum is removed from the set of n samples, the system is solved using the
remaining n-1 samples, and a prediction is made from the model for the removed datum.

Efron and Gong [1983] summarized cross-validation as

(a) deleting the points x; from the data set one at a time; (b) recalculating the
prediction rule on the basis of the remaining -1 points; (c) seeing how well the
recalculated rule predicts the deleted point; and (d) averaging these predictions
over all n deletions of an x;

If the case of a n length vector of equally weighted data, the cross-validated estimate of the

prediction error is the sum of the squared cross-validation residuals:
1 ¢ 2
—Z[Xi_)_C(i)] , (3.6)
iz

where X ;) is the model prediction of x; (with x; removed from the data set). This cross-

validation sum of squares (CVSS) has been used to optimize inversion parameters, such as
the smoothing weight [Matthews and Segall, 1993; Segall and Du, 1993; Freymueller et
al., 1994].

In the present application, the CVSS is used to ascertain whether the force and
moment terms are required by the data (no smoothing is required in our interpolation
problem). In a broader sense, the cross-validation residual is a measure of how successful
the interpolation model is in predicting missing seismograms. In this application, we
delete one aftershock seismogram at a time from the data vector, perform the inversion,
and measure the misfit between the model prediction and the omitted waveform. When
comparing the two vectors (data x and model prediction X), we define the weighted

cross-validation residual as

(5.7)
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which varies from 2 (perfectly anticorrelated), to 1.0 (uncorrelated), to O (perfect fit)
[Spudich and Miller, 1990]. The cross-validated prediction error quantifies how well the
model predicts the omitted data. Since the purpose of the model is to interpolate empirical
Green's functions for locations where there are no aftershocks, cross-validation provides
an appropriate measure of the model's utility.

Example data and model predicted seismograms for the five stations are shown in
Figure 5.4. For each seismogram, the prediction is obtained from a model that was
derived without using the corresponding seismogram in the data vector; hence, these are
examples of the method in the interpolation mode. The character of the waveforms is
generally similar for different earthquakes recorded at each station. For example, the
seismograms at Gilroy have an impulsive S-wave arrival and relatively little coda, whereas
the seismograms at Capitola are comparatively rich in high frequency energy and
demonstrate more event-to-event variation. Since the inversion corrects the seismogram
amplitude for the earthquake magnitude, small errors in the magnitude can cause large
amplitude differences even when the waveform shape shows good agreement. This is
most apparent in some of the examples recorded at Gilroy.

The cross-validation residuals are summarized in Figure 5.5 for the north-south
component of motion (results for the east-west component are negligibly different). Most
of the measurements fall between 0.8 and 1.0, indicating that the interpolated seismograms
are not strongly correlated with their observed counterparts. In the trivial case where the
predicted seismogram is a null vector, the residual value is 1.0, so it is clear that this site
model should not be used to interpolate Green's functions for these stations.

The residuals were examined to determine why some seismograms are more
predictable than others. An example of this analysis for the residuals at station Corralitos
(north-south component) is shown in Figure 5.6. It is reasonable to expect a correlation
between the magnitude of error in the source parameters and higher residuals — errors in
the focal mechanism or the event location are examples of known errors that could lead to
higher residuals. If such a correlation could be found, it could be used as a basis to weight
the seismograms in the inversion. In Figure 5.6, the residuals are plotted against various
aftershock parameters and the measures of their uncertainty. Unfortunately, we were

unable to identify a trend for any parameter that explains the behavior of the residuals. We
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Corralitos Saratoga  Anderson Dam  Gilroy Capitola

Figure 5.4. Example interpolation of seismograms. Select horizontal displacement
seismograms are shown for each stations. In each case, the data seismogram is not used to
obtain the model. The character of the waveforms is generally similar among different events at
the same station. The seismograms are aligned 1 s before the S-wave arrival.
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Figure 5.5. Cross-validation residuals for the five stations using the north-south component of
motion. The histogram (leff) and distribution (right) show that the interpolations are not strongly
correlated with the data. Seismograms from station GA2 (Gilroy) have the least coda and
produce the best interpolations; seismograms from station CAP (Capitola) show the least
interevent commonalty and yield the poorest interpolations. The mean is shown by a horizontal
line and 1 and 2 standard deviations of the mean are shown by error bars.
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also examined whether aftershocks from some areas of the fault zone produced higher
residuals than others, which might be caused by scattering or other propagation effects in
the fault zone [Cormier and Su, 1994], but we saw no obvious patterns. To some extent,
it appears that features in the observed waveforms are not fully explained by the theory in
the forward model. The model attempts to map all data variability to processes occurring
at the site — propagation and scattering away from the site is not included. Spudich and
Miller [1990] recognized this shortcoming, which was, in part, the motivation for their
subsequent study using multiple scatterers [Spudich and lida, 1993].

It is very likely that wave propagation effects away from the site are indeed
important and increase the residuals because they are not included in the forward model.
Cormier and Su [1994] used the Loma Prieta rupture model of Beroza [1991] and the 3D
velocity structure of Eberhart-Phillips et al. [1990] to show that heterogeneous structure
could produce waveform variations comparable to those resulting from the shallow
structure and surface impedance at the site. In particular, Cormier and Su [1994] found
that very heterogeneous parts of the velocity model, for example near the fault zone, could
cause amplitude variations of a factor of 10 or more. Hence, if these path effects could be

suppressed in the data seismograms, the cross-validation residuals should decrease.

5.5 Enhancing Site Effects With Eigenvalue Filtering

At each station, the propagation path is unique to each aftershock, but the site is
common. If correlated properties of the seismograms recorded at a particular site are
enhanced, the result should be the suppression of uncorrelated path effects and random
noise, and emphasis of the site response. For example, the local geology near the site
could produce a characteristic eigenspectrum (e.g., resonance) with little or no dependence
on azimuth or incidence angle [Bard and Bouchon, 1985]. Since the polarity of the §
wave varies with the source mechanism, it is critical that a method for enhancing the site
effect is able to accommodate sign changes. One method that satisfies these criteria uses a
SVD to determine the eigenspectrum of all data recorded at a site, and then reconstructs the
data using the largest eigenvalues. This technique was used by Freire and Ulrych [1988]
to separate upgoing and downgoing wavefields in a vertical seismic profile.

All seismograms for one component at one station are gathered in a matrix. The
row dimension is the number of points in the seismograms and the column dimension is

the number of seismograms. Eigenvalues and eigenvectors are found with a SVD. The
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Figure 5.6. Comparison of cross-validation residuals with various source parameters for the
north-south seismograms at station KOI (Corralitos). We were unable to identify a trend where
higher residuals were correlated with increased error in the source parameter.
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seismograms are then reconstructed using only the largest singular values. Eigenvalues
are retained, starting with the largest, until further eigenvalues no longer add significantly
to the prediction of the data as determined by an F-test. The F-test was used by Jacobson
and Shaw [1991] to find the number of eigenvalues to retain in a linear inverse problem;
here it is used in a similar manner. This filtering procedure is illustrated schematically in
Figure 5.7.

Common features of the original seismograms are contained in the largest singular
values and are retained in the reconstructed seismograms; dissimilar properties of the
seismograms are removed. An example of a reconstruction is shown in Figure 5.8. The
seismograms are reconstructed using only the first singular value, and the number that is
determined to be significant with the F-test. Also shown is the remainder, that is, a
reconstruction that uses all but the largest singular values. The S-wave arrival is aligned 1
s after the start of the seismogram. Energy in the first 1 s is P-wave coda and ground
noise that should be highly uncorrelated, and hence should not be retained in the
reconstruction. When only the significant eigenvalues are used there is little energy in the
first 1 s, while the remainder has considerable energy in the first 1 s.

The reconstructed seismograms were used as the data and the inversion procedure
(equation 5.1) was repeated. The resulting interpolation model demonstrates greater
predictive ability, as indicated by smaller cross-validation residuals. This is demonstrated
by the fit to seismograms shown in Figure 5.9, which are from the same aftershocks as the
seismograms shown in Figure 5.4. As before, the predicted seismograms are calculated
from a model that was found without using the corresponding seismogram in the data
vector. Note that both data and model seismograms are much simpler than their
counterparts in Figure 5.4. Specifically, there is less energy before the arrival of the S-
wave, the amplitude of the coda is decreased, and the S-wave pulse is more coherent for
different events at the same station. Overall, the seismograms exhibit greater interevent
similarity at each station.

The cross-validation residuals are summarized in Figure 5.10. Using the filtered
data, we reduce the residuals at some stations; however, because the site transfer-function
contains less information at high frequencies, its usefulness for calculating empirical
Green's functions (for modeling mainshock seismograms) is significantly reduced. The
residuals show more variability among the five stations than observed in Figure 5.5. The

stations KOI, DMD, and particularly GA2, all show marked improvement, while SAR and
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1 eigenvalue All others (2 ton)

time (s) time (s)

Figure 5.8. Example of eigenvalue filtering at station SAR. In each panel, the columns
(seismograms) of the reconstructed matrix are superimposed. The top left panel is a
reconstruction using just the largest eigenvalue, the top right is using all but the largest
eigenvalues (2 to n). The bottom left reconstruction uses the first seven eigenvalues, and the
bottom right uses all others (8 to n). The S-wave arrival is aligned 1 s after the start of the
seismogram. Energy in the first 1 s is P-wave coda and ground noise that should be highly
uncorrelated, and hence should not be retained in the reconstruction using the large eigenvalues.
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Figure 5.9. Fit to the data seismograms reconstructed using only the largest singular values.
Select horizontal displacement seismograms are shown for each station. The event-station pairs
are the same as those shown in Figure 5.4. Note the decrease in energy arriving during the first
1 s as compared to Figure 5.4.
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Figure 5.10. Cross-validation residuals for the five stations using reconstructed waveforms
obtained by retaining the most significant singular values. The histogram (left) and distribution
(right) show that the interpolated seismograms are better correlated with the data, compared to
Figure 5.5, with greater variability between stations. The mean is shown by a horizontal line, and
1 and 2 standard deviations of the mean are shown by error bars.
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CAP have nearly the same average residual. DMD is the only free-field site where the
seismometer was buried in soil. At the four other sites the seismometers were deployed on
the floor of small (1-story) structures. A structure can influence the recorded spectrum in
unpredictable ways, decreasing the amplitude at some frequencies and increasing it at
others. For instance, the simple pulse-like waveforms at Gilroy could be a result of
attenuation by the Physical Sciences Building (Gavilan College) in which the seismometer
was housed. The seemingly uncorrelated coda in the Capitola recordings might have
resulted in part from nonlinear characteristics of the large garage (Capitola Fire Station) in
which that seismometer was deployed. The details of each structure and the geology (e.g.,
fill material) beneath it is not presently available, but it likely has a significant effect on the
coherency of the site response and the success of the eigenvalue filtering. These effects
are obviously not accounted for in the theory and only serve to increase the model
residuals.

Although the utility of this implementation at Loma Prieta is unimpressive, it does
provide us with insight into how aftershock deployments can be improved to enhance the
usefulness of empirical Green's functions. Many locations with desirable characteristics
could have been used if more events had been recorded at them; in many cases, the
deployment lasted only a short time, sometimes less than one week. Moreover, it is
unfortunate that more seismometers were not deployed at free-field sites. There were
many free-field strong motion instruments that had excellent mainshock records but were
not co-located in the aftershock deployment. Finally, even if the site transfer-functions
had been more successful at interpolating seismograms, the narrowband response of the
recorded data would have limited their usefulness in modeling mainshock seismograms.
Use of broadband seismometers is essential for the full exploitation of the potential of
small earthquake seismograms. These factors face obvious economic and logistical
obstacles, but they are necessary if we are to increase the use of recorded waveforms as

empirical Green's functions.
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Conclusions

The site transfer-function models fit the data reasonably well but do a poor job of
interpolating missing seismograms. Two possible explanations for this are that the
quantity of data is insufficient to characterize the site, or that uncertainties in the source
parameters degrade model resolution. Analysis of cross-validation residuals suggests it is
likely that path effects away from the site are important. Filtering less significant
eigenvalues from the recorded data emphasizes the site-response and suppresses noise and
some path effects, yielding smaller residuals at some stations, but it discards important
high-frequency signal in the process. In summary, we find (1) cross-validation is a useful
for estimating model variance in complex inversion procedures that are not amenable to
theoretical analysis, (2) a simple site response model is inadequate for Green's function
interpolation at these stations using this data, (3) eigenvalue filtering is a simple technique

for isolating common effects associated with the site response.
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Abstract

Near-source seismograms reveal that the first P-wave arrival from earthquakes
is characteristically weak and erratic, and is followed subsequently by linear
growth in ground velocity that can be modeled as a simple circular crack expanding
at constant rupture velocity with uniform stress drop. The seismograms provide
empirical evidence for a period of quasi-dynamic nucleation preceding dynamic
earthquake rupture that is also predicted by theoretical models of fracture nucleation
and growth and measured in laboratory experiments designed to simulate faulting.
In this chapter, the duration of this seismic nucleation phase is measured
objectively using the amplitude of the moment-jerk function, which is proportional
to the product of dynamic stress drop and rupture velocity cubed for the circular
crack model. New measurements are made for 24 earthquakes from three sources
(the 1994 My, 6.7 Northridge aftershock deployment, the Chiba accelerometer
array near Tokyo, and the Global Seismic Network), and for 25 earthquakes
examined previously by Ellsworth and Beroza [1995]. The seismograms are from
stations located close to the earthquake (typically within one source-depth) and the
wave propagation direction is close to vertical. Durations based on the moment-
jerk amplitude confirm a scaling relationship identified by Ellsworth and Beroza
[1995] for the same 25 earthquakes: the moment-jerk during initiation is smaller
than the rest of the earthquake, and the duration of the seismic nucleation phase
increases with the moment of the subsequent earthquake. In this study, the
duration of the seismic nucleation scales with the seismic moment raised to the
power 0.2.
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6.1 Introduction

The best current models of earthquake rupture (based on fracture mechanics theory
and laboratory experiments) suggest that a slow nucleation phase (low stress drop fracture
occurring at velocities much lower than the elastic wave speed) should precede dynamic
crack growth. If such a nucleation phase exists for earthquakes, it would be difficult to
measure with a seismometer because its amplitude would be small and it might radiate no
detectable high-frequency energy. Observation of this nucleation phase and the ability to
explain it in terms of the timing and spatial association with the following earthquake could
provide key evidence on the plausibility of short-term earthquake prediction.

There is recent seismic evidence from high-dynamic-range recording systems that
many earthquakes do have an early seismic signature that is weak, which might represent
an observable late stage of slow premonitory sliding in a nucleation zone that is otherwise
aseismic [lio, 1992, 1995; Beroza and Ellsworth, 1995; Ellsworth and Beroza, 1995 —
hereafter referred to as BE-EB, 1995]. This observed weak beginning, termed the seismic
nucleation phase, could be related to observations of fracture nucleation in controlled
laboratory experiments [e.g., Dieterich, 1979; Ohnaka et al., 1986; Ohnaka and
Kuwahara, 1990; Kilgore et al., 1993; Blanpied et al., 1995], and properties of earthquake
nucleation predicted by theoretical models [e.g., Andrews, 1976; Rice, 1980, 1992; Das
and Scholz, 1981; Dieterich, 1986, 1992; Rice and Gu, 1983; Ohnaka and Yamashita,
1989; Ohnaka, 1993].

The model proposed by Dieterich [1986] suggests that slow, stable slip occurs

until a critical crack radius, r_, is exceeded. The critical radius is a function of the normal

stress, loading conditions, and constitutive parameters that include the characteristic slip
distance, D.,:

r = 126D (6.1)
240&

where G is the shear modulus, o is the normal stress, and £ is a parameter that depends
on specific constitutive parameters and experimental conditions. In a laboratory

experiment designed to simulate strike-slip faulting, Dieterich [1986] measured an upper
limit for D, of 50 pum for a r, that was estimated to be 5.3 m. Extrapolation of these

measurements to the scale of large earthquakes suggests that D, could reach 50 mm for 7,
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=5.3 km. In the experiment, slip that occurred in the final stages of the stable slip interval
was roughly five times the amplitude of D, ; that is, for r, = 5.3 km, the preslip could be
as large as 25 cm [Dieterich, 1986], which might be detectable using near-source
seismometers.

It is highly uncertain if extrapolation of the experimental results (to earthquake
scale-lengths) is valid, or whether the laboratory conditions simulate all relevant
earthquake physics (e.g., slip at high rupture velocity), nonetheless considerable effort has
been focused on observing premonitory slip, in particular using borehole and long baseline
strainmeters that detect slow, episodic deformation [Agnew and Wyatt, 1989; Johnston et
al., 1990]. Strainmeters are designed to measure long-period deformation, such as small
amplitude displacement occurring hours or days before an earthquake. To date, no such
premonitory deformation has been observed with these instruments [Agnew and Wyatt,
1989; Johnston et al., 1990; Wyatt et al., 1994].

At shorter time-scales (from seconds to hours), it is well-known that many large
earthquakes are preceded by foreshocks. These observations have motivated many studies
that examined the spatial and temporal relationships between foreshocks and mainshocks
[e.g., Das and Scholz, 1981; Jones, 1984; Ohnaka, 1993; Abercrombie et al., 1995;
Dodge et al., 1995]. The great 1960 My, 9.5 Chilean earthquake is a striking example that
included both traditional foreshocks (i.e., typical stress drops and rupture velocities)
[Cifuentes, 1989], and slow deformation that radiated relatively low-frequency energy
[Kanamori and Cipar, 1974; Cifuentes and Silver, 1989]. As discussed by Dodge et al.
[1995], the term foreshock is not defined precisely in terms of its spatial and temporal
association with the ensuing mainshock. They used foreshocks in the strict sense to
denote events occurring a few hours or days prior to and within a few source dimensions
of the mainshock. In the present study, the term foreshock implies a seismic event
occurring in the few minutes before the mainshock in approximately the same location.
Recent earthquakes in California with this type of immediate foreshock include 1989 My,
6.9 Loma Prieta [Wald et al., 1991], 1992 My, 7.3 Landers [Abercrombie and Mori, 1994;
Dodge et al., 1995], and 1994 My, 6.7 Northridge [BE-EB, 1995]. Other examples are
documented in BE-EB [1995].

BE-EB [1995] suggested that these immediate foreshocks may represent a seismic
nucleation phase; that is, the seismic signature of an intermediate stage following aseismic

nucleation and preceding dynamic rupture — a period Ohnaka [1993] called quasi-dynamic
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nucleation. They examined 30 earthquakes ranging in magnitude from 3 to 8 and detected
a seismic nucleation phase for each. In some cases, the seismic nucleation phase began
with a foreshock that was distinct in time from the mainshock (by seconds or fractions of a
second), in others it was manifested as weak but continuous growth of the initial P-wave
arrival. In all cases, the moment rate during this nucleation phase was observed to be
lower than the moment rate at the beginning of the mainshock. In addition, they observed
that the size and duration of the seismic nucleation phase increased with the size of the
subsequent earthquake, suggesting that properties of the nucleation process may influence
the ultimate earthquake; i.e., the longer the duration of the seismic nucleation phase, the
larger the mainshock moment. They further argued that the size of the nucleation zone,
and the displacement amplitude during nucleation, also increase with mainshock size.

A shortcoming of the approach used by BE-EB [1995] was that the measurement
of the nucleation duration was determined subjectively; hence, the implied scaling
relationships were uncertain. The error associated with identifying the first P-wave arrival
(the beginning of the seismic nucleation phase) is usually negligible for seismograms
recorded on broadband, high-dynamic-range systems — if the first arrival is distinct from
the noise, it can be measured with a precision equal to the sampling interval. The more
difficult procedure is defining the end of the nucleation phase and the beginning of normal
dynamic rupture in the mainshock, which BE-EB [1995] termed the breakaway phase.

There are two ways to measure the breakaway time. The first seeks to identify an
increase of moment acceleration that is large relative to the rest of the earthquake
beginning; BE-EB [1995] picked the breakaway at the time when the seismic moment
acceleration increased abruptly. The second approach seeks to identify an increase in
moment acceleration that is large in an absolute sense. A potential problem with this
second approach is that it treats all earthquakes similarly and does not account for known
differences in source characteristics (e.g., stress drop, rupture velocity, displacement rise-
time, etc.). Despite this potential difficulty, we find that an absolute level of moment
acceleration results in a measurement of breakaway for the same earthquakes examined in
Ellsworth and Beroza [1995] that are generally similar over all magnitudes. This suggests
that the amplitude of moment acceleration is low, in an absolute sense, during the
beginning of most earthquakes, and that the duration of this period is longer for larger

earthquakes.
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In addition to reexamining 25 of the 30 events presented in Ellsworth and Beroza
[1995], we present new measurements of 24 earthquakes, some of which occur at greater
depths (50 to 150 km) allowing possible dependencies attributable to source depth to be
examined. For all earthquakes, we calculate the moment rate and moment jerk as a
function of time, and define breakaway at the time when the moment jerk exceeds a
prescribed level; this measurement defines the seismic nucleation phase in a purely
objective manner.

Many studies have estimated the average stress drop of earthquakes [e.g., Hanks
and Wyss, 1972; Thatcher and Hanks, 1973; Kanamori and Anderson, 1975; Hanks and
McGuire, 1981; Boatwright, 1984; Cocco and Rovelli, 1989; Mori and Frankel, 1990;
Abercrombie and Leary, 1993]. In these studies, either the static stress drop is calculated
from the source dimension, or the dynamic stress drop is determined by measuring the
initial slope of the velocity P-waveform or the root-mean-square (rms) acceleration of the S
wave. In each case the stress drop determined is an average for the earthquake; temporal
variations of stress release are not established.

In this paper we interpret the moment jerk in terms of the time-varying dynamic
stress drop. Because this interpretation, which is predicated on an idealized circular crack
model that grows at constant rupture velocity, breaks down at later times, this approach
can only be appropriate for the initial P wave and the beginning of earthquake rupture. For
the earthquakes examined, the median maximum stress drop is about 300 bars. The
maximum stress drop does not depend on the earthquake magnitude and does not
obviously depend on the earthquake depth. Using a stress drop of 50 bars (moment jerk
of 1.4x10'® N-m/s?) as the threshold yields measurements for the duration of the seismic
nucleation phase that agree most closely with the picks made by Ellsworth and Beroza
[1995] for the same earthquakes; however, the nucleation durations are shorter for the
largest earthquakes. A 50 bar stress drop is a typical value for "average" earthquakes
[Kanamori and Anderson, 1975; Abercrombie and Leary, 1993]. Using a higher stress
drop (higher moment jerk) as the threshold yields measurements that agree better at large
magnitudes, but there is less data because some events never reach the threshold and the
nucleation phase is thus undefined. Calculation of the moment-jerk function requires a
single seismogram; when multiple seismograms are available the measurement uncertainty

can be assessed.
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6.2 Examples of the Seismic Nucleation Phase

Historically, most near-source data have been recorded on analog seismographs
with insufficient dynamic range and bandwidth to capture the initiation process. For most
large earthquakes, the limited dynamic range of near-source high-gain seismographs is
exceeded shortly after the P-wave arrival. Since the velocity structure beneath the site is
rarely known in detail, it is difficult to relate the beginning of rupture measured on a high-
gain instrument with seismograms from other locations. On the other hand, most low-gain
instruments are triggered by the ground motion amplitude and can miss the first-arriving P-
wave if its amplitude is small. Digital recording systems with high dynamic range (16-bit
or better) allow measurement of the initial P wave and the subsequent mainshock pulse.

At teleseismic distances the seismic nucleation phase is too small to be observed for
most earthquakes; at regional distances complex wave propagation effects (e.g.,
refractions) can distort the P-wave arrival. Observing an uncorrupted direct P-wave is
most assured when the seismometer is within one source-depth of the epicenter where the
wave propagation direction is close to vertical. In this geometry, propagation complexities
are minimized and the theoretical Green's function used to derive the moment-rate function
is accurate over a wide frequency range — from static displacement to the highest
frequencies recorded. Because the nucleation phase is characteristically weak, clear
detection requires a low-noise environment and a high-dynamic-range (i.e., 16-bit or
better) recording system. In addition, seismometers with broadband response (i.e., 0.01
to 50 Hz) are required to obtain broadband moment-rate functions.

Three examples of the seismic nucleation phase measured within one source-depth
are shown in Figure 6.1. In each example the seismogram is from a Northridge
aftershock, measured with a STS-2 seismometer, and sampled at 200 sps by a 16-bit
recording system. The pair of velocity seismograms are plotted at the same time scale but
the magnification is different; the onset of the seismic nucleation phase is marked with an
arrow. The first example in Figure 6.1 is a 12 km deep M 4.9 event recorded at an
epicentral distance of 9 km. It has a weak beginning with a duration of approximately 0.2
s. The first half-second is enlarged showing that the P-wave arrival is weak initially and
then grows linearly in time as predicted by a self-similar model of rupture at constant stress

drop and rupture velocity.
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Figure 6.1. Three varieties of the seismic nucleation phase recorded on STS-2 seismometers
with 16-bit dynamic range. In each example, two velocity seismograms are plotted at the same
time scale but with different magnification. The top seismograms show the time of the first-
arriving P-wave; the middle seismograms show that pick relative to the P-wave pulse; the bottom
panel is yet an even larger enlargement of the P-wave arrival showing the eventual linear growth
with time. In the third example, the bottom panel shows the P waveforms from the foreshock
and the subsequent earthquake at the same time scale. Note the longer duration of the P-wave

pulse for the M 3.0 foreshock compared to the M 4.2 event.
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In the second example in Figure 6.1, the seismic nucleation phase is more subtle.
In this recording the velocity grows continuously but approximately 0.05 s elapses before
the growth is linear. It has been suggested that this emergent P-wave arrival could be
caused by wave propagation effects (e.g., forward scattering), anelastic attenuation, or the
response of the instrument, rather than reflect slow initial growth of the earthquake. lio
[1995] examined 69 microearthquakes (M -1 to 3) and found this type of beginning, which
he called the slow initial phase, for each of them. He argued that it was not caused by the
recording system, not likely to result from velocity structure heterogeneity, but could result
partly from attenuation. He concluded that the slow growth reflected the source process
and showed that its duration scaled with the rise time of the subsequent earthquakes.

The third example is particularly interesting: a weak foreshock occurring 5 s
before a M 4.2 earthquake in the same approximate location. In this example, the duration
of the M 3.0 foreshock is anomalously long for its magnitude, which can be seen by
examining the first 1 s of the two waveforms. The initial P wave is similar for both
events, suggesting a comparable focal mechanism, but the P-wave pulse width (and the
source duration) of the foreshock is longer than the following earthquake. Although
attenuation will act to reduce disproportionately the high frequencies radiated from smaller
earthquakes (thus broadening the pulse width), it cannot explain the longer pulse duration
of the smaller foreshock since the propagation paths are identical. The seismograms from
this earthquake include about 10 s of pre-event recording, which allows this unusual event
to be identified. The epicentral location can be shown to be the same as the subsequent
event because the foreshock is observed on multiple near-source seismograms. The longer
duration of the foreshock can only be explained by a rupture velocity that is lower than the

following earthquake.

6.3 Moment Rate, Moment Jerk, and Stress Drop
The temporal growth of an earthquake can be described by the point-source
moment-rate function, Mo(t). The moment-rate function is obtained by deconvolving a
theoretical Green's function from an observed P-wave seismogram. We use half-space
Green's functions that include the near-field contribution [Johnson, 1974], and fault plane
solutions determined from first-motion data or teleseismic waveform inversions.
Representing the structure as a half-space is an approximation but is reasonable given the

simple propagation geometry. Green's functions calculated for layered velocity models
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[Saikia, 1994] produce similar M, (¢). The deconvolution is solved in the time domain

using both standard least-squares and non-negative least-squares. Rather than deconvolve
the instrument response from the recorded seismograms, we convolve it with the Green's
function because the result is more stable at high frequency. For some earthquakes a weak
smoothing constraint is applied to stabilize the inversion, but for most no smoothing is
necessary. In all cases the model fit to the observed seismogram is near-perfect, with a
variance reduction (equation 2.17) greater than 90%. This level of fit presupposes that
both the observed and theoretical seismograms contain negligible error, which is
reasonable only when using near-source recordings from broadband seismometers and
complete Green's functions — errors in either seismogram will be mapped into errors in
M, ().

Since earthquakes occur on faults with friction, we do not expect slip to reverse
direction; hence, the seismic moment and the M, (¢) should be non-negative at all times.
Even small errors in the Green's function can result in a M, (¢) that is partially negative.

To assess systematically the significance of error in each Mo(t) inversion, we solve the

inverse problem both with and without the positivity constraint. For instance, source
parameters (e.g., location, depth, focal mechanism) that are required to compute the
theoretical Green's function are never exact, and these errors can be important, especially
when the radiation is near a nodal plane. It is difficult to know in advance the importance
of error in each inversion; thus, solving the problem without a positivity constraint and
obtaining a non-negative solution is an independent check of assumptions made in the
modeling. In most cases, the least-squares solution is purely non-negative. In cases when
it is not, a non-negative least-squares solution can often fit the data nearly as well (as
measured by the variance reduction). As a further check on the assumptions, the seismic
moment obtained by integrating M, (¢) should agree closely with independent estimates.

In the dynamic solution for a circular dislocation expanding at constant rupture
velocity with constant stress drop, the fault area grows as time squared and the seismic
moment grows as time cubed. Since the far-field displacement is proportional to the
moment rate, the far-field velocity seismogram will grow linearly with time until the
rupture growth is inhibited by either strength heterogeneities or the finite size of the fault
(i.e., the fault starts healing) [Kostrov, 1964; Madariaga, 1976]. This simple dislocation

model is useful for interpreting seismograms and explaining them in terms of earthquake
rupture dynamics. BE-EB [1995] used quadratic growth in M (¢) to define the end of the
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seismic nucleation phase (breakaway). They did this by identifying the first abrupt linear
growth in the moment acceleration, M (t).

The static stress drop, Ao, of a circular fault is
_Tmpa

Ao R 6.2
16 a 6.2)

where u is rigidity and a is the radius [Eshelby, 1957]. The seismic moment can then be

written

10 \oa® (6.3)

o
(using the expression M, = Air), where A is the fault area and % is the average

displacement. Boatwright [1980] used equation 6.3 to express the moment in terms of the
dynamic stress drop (or effective stress), T,,

\C

wm, =[22%a’ \Clo/B) (6.4)
3 v./B

where v, is the rupture velocity and f§ is the shear-wave speed [Brune, 1970]. C(v,/B)

is called the Kostrov function [Dahlen, 1974] and is approximately equal to v, /B for most

earthquakes [Boatwright, 1980]. If we make this assumption, then the ratio of static stress

drop to dynamic stress drop is

A 7
o2 (6.5)
T, 24
and after substituting v, ¢ for a, equation 6.4 becomes
2
M, (1) = —35 T,V (6.6)

Differentiating with respect to time yields an expression for the moment-rate



Chapter 6 — Seismic measurements of earthquake nucleation 131

M, (t)=2r1,v) 1% (6.7)
Two more time-derivatives yields the moment-jerk function, M, (¢):
M, (1)=4r7t,v). (6.8)

In words, for a radially expanding rupture observed in the perpendicular direction,

the moment jerk is proportional to the product of the dynamic stress drop and the rupture
velocity cubed. Using this expression, small Mo (¢) (e.g., the seismic nucleation phase)

implies either low v, , or low 7,, or both, relative to the mainshock. At constant v,, the
dynamic stress drop is proportional to M, (¢).

A fourth-order central difference formula with error proportional to 44 is used to
differentiate M, :

Jioa=8fi1+8f i~ fin

, 6.9
12h (6.9)

sz

where 4 is the sampling interval. Since Mo is differentiated twice, the result depends

strongly on the accuracy of M. A narrow triangular smoothing operator is applied before

each derivative, which improves the stability of the result but also reduces temporal
resolution (measuring the average stress drop for the entire earthquake is an extreme

example of smoothing). Although the absolute stress drop estimates are dependent on the
particular smoothing used, the relative amplitudes within Mo are not. It is possible to get

an idea of the variance of M_ by making independent observations of the same earthquake

using seismograms recorded at different locations.

If earthquake nucleation is indeed characterized by unusually low dynamic stress
drop, it is sensible to define the end of nucleation at a time when M_(¢) is no longer

unusual. In this chapter we calculate M_(z) for each earthquake and interpret the results in

terms of varying stress drop (by assuming that rupture velocity is constant). The

assumption of constant rupture velocity is made for simplicity; the measured variations in
Mo (¢£) could represent variations in rupture velocity, stress drop, or both. In reality the

rupture velocity is probably not constant [Sato, 1994]; however, it can be argued that it
contributes less to variability in M, (¢) than does variation in 7, [Quin, 1990; Mikumo and



Chapter 6 — Seismic measurements of earthquake nucleation 132

Miyatake, 1993, 1995]. Values of Mo(t) are listed in Table 6.1 for representative

combinations of 7, and v,; for these eight examples, Mo spans more than an order of

magnitude. With the present approach, it cannot be determined whether variations in
M, () are attributable to rupture velocity or stress drop — in this study variations in M_(z)

are interpreted as variations in stress drop, but this choice is arbitrary.

Table 6.1. Rupture Velocity and Stress Drop

Case Vr Te MO
(km/s) (bars) (x10Y N-m/s3)
1 2.8 6 2
2 2.8 10 3
3 2.8 30 8
4 2.8 60 16
5 2.8 100 28
6 2.2 20 3
7 2.8 20 6
8 3.2 20 8

In studies where direct measurement of v, is possible, it is found that the rupture
velocity is typically 70 to 80% of the shear wave velocity [Geller, 1976]; for crustal
earthquakes the rupture velocity is usually near 2.8 km/s. There is great variability in
estimates of static stress drop for earthquakes [Hanks and Thatcher, 1972; Hanks and
Wyss, 1972; Thatcher and Hanks, 1973; Kanamori and Anderson, 1975; Geller, 1976,
Hanks and McGuire, 1981; Cocco and Rovelli, 1989; Mori and Frankel, 1990;
Abercrombie and Leary, 1993]. Typical values fall in the range from 1 to 100 bars (10
bars = 1 MPa), but estimates can range from less than 1 bar to over 1,000 bars. The
rupture area of large earthquakes can be estimated using aftershocks but it is difficult to
measure accurately the dimension of small earthquakes. Since estimates of static stress
drop have a cube-root dependence on the source area, errors in the source dimension
produce large errors in the corresponding estimates of static stress drop [Boatwright,
1984]. Abercrombie and Leary [1993] used borehole seismometers to demonstrate that
near-surface attenuation can lower the corner frequency (used to infer source size) for
seismograms recorded at the Earth's surface. Using borehole seismograms they detected

source dimensions of less than 10 m and found static stress drops ranging from 1 to 1000
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bars. They also found that the level of stress drop did not depend on earthquake size;
earthquakes appeared self-similar over the range M -2 to 8.

Dynamic stress drop is an empirical measurement of the efficiency of energy
radiation that does not depend on rupture area. Boatwright [1984] compared the static
stress drop to the dynamic stress drop for eight aftershocks of the 1975 Oroville,
California, earthquake recorded at multiple seismometers. By obtaining multiple estimates
of each event, he was able to express the variance associated with each stress drop
measurement. Overall, he found that the dynamic stress drop estimates were larger
(~50%) and had smaller variance than the corresponding static estimates.

Since the P-wave displacement seismogram is proportional to the moment rate in
the far-field [Aki and Richards, 1980], a P-wave velocity seismogram is proportional to
the moment acceleration. When the Green's function is a simple impulse (in
displacement), the dynamic stress drop can thus be estimated from the slope of the P-wave
arrival on a velocity seismogram, or equivalently, by the rms acceleration. This approach
yields the average dynamic stress drop and is only appropriate in the far-field. In this
study, we use a time-varying characterization of dynamic stress drop and include near-field
contributions (see Section 2.4).

We solve for the moment-rate function of 24 M 4 to 7 earthquakes (listed in Table
6.2) obtained from three sources: aftershocks of the 1994 Northridge earthquake;
earthquakes recorded by the Chiba borehole array near Tokyo, Japan; and earthquakes that
occurred adjacent to stations of the Global Seismic Network (GSN). In most cases the
recording distance is less than one source-depth and the wave propagation is near-vertical.
We use these moment-rate functions, together with 25 events from Ellsworth and Beroza
[1995] (listed in Table 6.3), to estimate the time-varying dynamic stress drop for the
beginning of 47 earthquakes (two events are included in both Tables 6.2 and 6.3).

6.4 Moment-Rate Functions

6.4.1 Northridge Aftershocks
* Nine Northridge aftershocks (M 4.1 to 4.6) are examined in this study. They all
occurred at depths less than 17 km - the locations, depths, magnitudes, and focal
mechanisms are from Hauksson et al. [1995]. Figure 6.2 shows a map view of the

aftershock locations and the close-in stations that recorded them. Ground motion was



Chapter 6 — Seismic measurements of earthquake nucleation

Table 6.2. Earthquake Source Parameters

134

M,

Te

z

; LY v v
d date event M N o) () (82)0 (Si (50 (2’) (.
1 21-Jan-1994 N1839 scfs 45 6.3e+15 11.1 106 | 0.17 0.18 0.20 0.33 160
2a 21-Jan-1994 N1842 scfs 3.2 7.1e+13 ~10.0 ~7.9 0.18 40
2b 21-Jan-1994 N1842 scfs 42 22e+15 100 7.9 5.03 5.03 5.03 0.18 1060
3  21-Jan-1994 N1852 nhfs 43 32e+15 125 89 0.02 0.02 0.02 0.21 1600
4 23-Jan-1994 NO855 scfs 4.1 1.6e+15 10.3 9.7 0.10 0.20 0.20 0.19 170
5 24-Jan-1994 NO415pwgb 4.6 89%e+15 140 89 0.05 0.06 0.06 0.29 490
6 24-Jan-1994 NO550 pwgb 4.3  3.2e+15 82 120 | 0.01 0.05 0.11 0.21 160
8 27-Jan-1994 N1719 nhfs 4.6 8.9e+15 17.7 163 0.04 0.04 0.04 0.30 550
9a 3-Feb-1994 NI1623pdam 2.4  3.8e+12 ~54 ~89 0.16 3
9b 3-Feb-1994 NI1623pdam 4.3 3.2e+15 54 8.9 351 351 351 0.16 470
10 6-Feb-1994 N1319 scfs 41 16e+15 128 119 | 0.02 0.05 0.07 0.22 90
11 27-Feb-1983 Chiba 8307 59 8.1e+l7 352 72. 0.10 0.15 0.18 0.8 290
12 17-Dec-1984 Chiba 8420 50 35e+l6 5.6 78. 0.01 0.01 0.01 0.23 420
13 8-Jun-1985  Chiba 8510 52 7.le+l6 151 64. 0.01 0.01 0.01 045 240
14 4-Oct-1985 Chiba 8519 6.0 88e+17 27.7 781 | 0.01 0.38 0.40 1.9 1240
15 17-Dec-1987 Chiba 8722 6.7 1.2e+19 44.7  58. 0.01 0.01 0.01 >3 1350
16 16-Jan-1988 Chiba 8806 50 35e+l6 34.7 342 | 0.32 0.33 0.34 0.9 540
17 18-Mar-1988 Chiba 8816 5.6 3.1e+l7 422  96. 0.01 0.01 0.01 1.7 240
18 19-Feb-1989 Chiba 8901 5.6 2.6e+17 47.7 55. 0.01 0.02 0.05 0.7 250
19 2-Jan-1990 Guam 5.8 58e+17 53.1 147.| 0.58 0.62 0.66 1.9 350
20 12-Jun-1991 Erimo,Japan 5.8 52e+17 84.1 112. | 0.64 0.78 0.88 22 110
21 27-May-1992 S.Karori, NZ 5.9  86e+l17 955  85. 0.12 0.16 0.18 1.5 370
22 15-Jan-1993 Erimo,Japan 7.6  2.7e+20 154. 100. | 1.46 1.52 1.88 1.5 260
23 25-Mar-1993 Erimo, Japan 6.0 1.1e+18 37.3  33. 0.04 0.10 1.50 34 160
24 11-Aug-1993 Guam 6.0 12e+18 96.0 56. 0.58 1.98 2.08 21 140
25 16-Aug-1993 Guam 6.0 97e+17 71.1  33. 0.08 0.12 0.16 2.1 200

I'e epicentral distance; Z depth

Vs, duration of seismic nucleation phase determined with a 50 bar threshold

Y total earthquake duration minus Vs, (when defined)

Tmax

maximum dynamic stress drop during earthquake beginning
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recorded at 200 samples per second (sps) on 16-bit data loggers; the seismometer was

either a STS-2 or a force balance accelerometer (FBA). Seismograms from the STS-2
instruments have superior broadband response and are used to obtain the M_(¢). Solving

for M, (¢) at multiple stations allows the associated uncertainty to be estimated and reveals

single-station bias that can result from rupture directivity.

Two example deconvolutions are shown in Figure 6.3: the initial P-wave arrival is
unambiguous and equated with ¢ = 0. In the least-square inversion, the data vector is the
vertical component seismogram, the kernel matrix is comprised of a single Green's
function seismogram shifted one time-sample in each subsequent column, and the model is
Mo (). The model and the fit-to-data are shown in Figure 6.3; the agreement is almost
perfect. In the examples shown, the solutions obtained with least-squares and non-
negative least-squares are essentially identical. In most cases, M_(t) is a simple pulse that

can be differentiated stably provided that M_(z) is sampled finely. The moment

acceleration is also shown in Figure 6.3; the slope is proportional to stress drop.

6.4.1.1 Low Stress Drop Foreshocks

Figure 6.4 shows seismograms and the corresponding M (¢) for two pairs of

events 2a & 2b, and 9a & 9b, the parameters of which are listed in Table 6.2. Event 2a is
a M 3.0 foreshock that occurred 4.96 s before event 2b (M 4.2) in approximately the same
epicentral location — the 4.96 s separation between the two P-wave arrivals is constant for
the few stations at which it could be measured (seismograms from events 2a & 2b were
used in Figure 6.1). Event 9a is a M 2.4 event that occurred 3.50 s before event 9b (M
4.3) in approximately the same epicentral location. A similar focal mechanism for events
2a & 2b is suggested by the similar waveform at station SCFS, but this is not the case for
the pair 9a & 9b. Ground noise at station PDAM is relatively high and is of particular
concern in the analysis of event 9a because of the weak signal strength. No source
information exists for the two precursors (2a, 9a) and it was thus necessary to assume they
had the same mechanism and depth as the following events, so their M, (t) are less
certain. Nonetheless, for each event pair the stress drop is much lower for the foreshocks.
~ This conclusion is evident in the raw P-wave pulse width for event 2 at station
SCFS (discussed earlier in Section 6.2), and is confirmed by the maximum dynamic stress
drop. The peak stress drop in events 2a and 9a are low compared to other earthquakes

(Table 6.2), and are low compared to the subsequent earthquakes (events 2b and 9b). The
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fact that each foreshock occurred in the same location a few seconds before the larger
earthquake is consistent with the possibility that 2a and 9a represent the beginning of a
quasi-dynamic instability (characterized by weak seismic radiation) that follows an
aseismic nucleation phase. Of the nine Northridge aftershocks examined in this study, two
exhibit these low-stress drop foreshocks. Detection of these weak foreshocks is only
possible on the closest STS-2 recordings; at near-source FBA recordings (some within 10

km) the foreshock signal was not detectable above the noise.

6.4.1.2 Multiple Station Analysis

For each Northridge aftershock we determine M, (¢) using a minimum of two
stations. In practice, seismograms recorded with the STS-2 seismometers produced better
results than those recorded on FBAs, which could be attributable to lower noise
characteristics of the site or the instrument. Because there are various sources of error that
can degrade the accuracy of M,(f), it is useful to examine the stability of the
deconvolution. Variability in the total seismic moment among solutions from different
stations results from inaccurate theoretical seismograms, which, in turn, is caused by focal

mechanism errors, deviations from the idealized velocity model, and errors in the assumed
instrument response. Examples of MO (¢) obtained from two different stations are shown

in Figure 6.5 together with their corresponding derivatives, M_(z) and M_(¢). These
examples demonstrate that even when M, (¢) exhibit differences (e.g., the total seismic
moment), the amplitude of M,(t) can be stable. The stability is enhanced by the
smoothing applied prior to each derivative, which is the same for each seismogram shown.
Note that the shape of M, (¢) is demonstrably variable. This variability is expected and
results primarily from the rupture directivity, although errors in Mo (¢) can also produce
temporal variations in M_(r). The preferred M, (¢) used to calculate M, () for each event
is that from the closest station with an impulsive P-wave whose total moment best agrees
with independent estimates. The seismic moment is derived from the local magnitude

[Hauksson et al., 1995] using the relation

log,,M, =1.5M +9.05. (6.10)
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Figure 6.2. Map of the Northridge aftershocks and seismometer locations used in this study.
The aftershocks are recorded by STS-2 and FBA seismometers on 16-bit systems. The STS-2

stations SCFS, PDAM, NHFS, and PWGB are used to derive the moment-rate functions.
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Figure 6.3. Example deconvolution for two Northridge aftershocks. The top and bottom
examples have the same format: the pick of the first arriving P-wave is shown on the left; the
data seismogram is top center and the model fit is shown by a dashed line; the bottom center is
the moment-rate function which is the solution to the inverse problem. The moment-rate function
is an approximate temporal description of energy release in the earthquake; however, it may be
strongly affected by rupture directivity. The derivative of the moment-rate function is shown to
the right. The slope of this function is proportional to stress drop (equation 6.8). The time at
which the slope exceeds 50 bars is marked with an arrow.
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Figure 6.4. Two earthquakes at Northridge with weak foreshocks. Two earthquakes at Northridge
were preceded by weak foreshocks (event 2a was 5 s before 2b, event 9a was 3.5 s before
9b). These foreshocks are only detectable on the closest STS-2 seismometers and have
unusually long durations for their magnitudes suggesting low rupture velocity.
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Figure 6.5. Example of moment-rate functions derived from different seismograms for the same
earthquake. The moment-rate function is shown on the left, the moment acceleration is in the
center, and the moment-jerk function is on the right. The moment jerk is proportional to stress
drop at constant rupture velocity. For each earthquake, two solutions are obtained from different
seismograms. Note that even when significant variability exists in the total seismic moment
(integral of moment rate), the moment-jerk amplitude can be similar.
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Figure 6.6. Moment-rate functions for all Northridge aftershocks (see Table 6.2). For each
earthquake, the moment-rate function is derived at two stations. Pulse shape consistency implies
a smaller rupture area or an observation angle perpendicular to the rupture plane; rupture

directivity can cause the pulse duration to differ but the total seismic moment should be the
same.
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Two moment-rate functions for each Northridge aftershock are shown in Figure
6.6. There is generally good agreement in the pulse shape for each event. The duration of
the two pulses for events 4, 5, and 6 are different, but their total moments are similar,
suggesting that the variation in pulse width is attributable to source directivity. The
corresponding M (¢) generally show good agreement in the function shape, but can differ
in amplitude. Rather than average the measurements, the one seismogram is used that
displays the optimal combination of proximity to the earthquake, an impulsive P arrival,

and agreement in total seismic moment.

6.4.2 Earthquakes Recorded on the Chiba Array

Shown in Figure 6.7 is a map view of the Chiba borehole array near Tokyo,
Japan, and the locations and focal mechanisms of eight M 5.0 to 6.7 earthquakes that
occurred during the years 1983 to 1989. This data is unique for several reasons: the
events are deeper than those analyzed previously, with hypocentral depths that range from
34 to 96 km; the ground motion was recorded on FBAs and sampled at 200 sps on a 12-bit
system (in this case, the least significant bit is 1 cm/s2); since the seismometers were
located in boreholes at 10 m depth, the ground noise is greatly reduced; there are five
boreholes within a horizontal radius of 5 m, so the array elements can be stacked to
enhance the signal-to-noise ratio (snr).

An example of a stacked seismogram is shown in Figure 6.7: five vertical
accelerograms are combined to produce the seismogram that is integrated to velocity and
used as data in the inversion. The weight of each seismogram in the stack is inversely

proportional to its pre-event noise. The time series is assumed to have the form:
A, =8)+N,(@), (6.11)

where A, (¢) is the record for the nth station, S(¢) is the signal (assumed to be the same at

every station), and N, (¢) is the noise at the nth station. The average power of the noise at

the nth station is

v, =(N2(0)), (6.12)

where ( ) indicates the mean value. And the total noise in the stack is
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v=>wiv,, (6.13)

where w, is the weight of each station. The objective is to find the w, that minimizes v

under the condition that

Yw, =1, (6.14)

which is satisfied for

(6.15)

[Riedesel et al., 1980].

After the array components are stacked into a single seismogram, the
deconvolution is performed for each earthquake. Example deconvolutions are shown for
two Chiba earthquakes in Figure 6.8. The P-wave arrival is identified on the accelerogram
and defined as the origin. Because these recordings have less than 1 s of pre-trigger
memory and were recorded on a 12-bit system, detection of the earliest P-wave arrival is
much less certain than with the other seismograms used in this study. This ambiguity is
particularly evident in the first example shown in Figure 6.8.

Source parameters were determined from local and regional arrays and provided by
the National Research Institute for Earth Science and Disaster Prevention, Japan. For the

largest events (#11, 14, 15, 17, and 18), the seismic moment (and moment magnitude)
determined from teleseismic records is listed in Table 6.2. As before, the model, Mo(t),

the fit-to-data, and Mo (¢) are shown. No regularization was required in these inversions

with Chiba seismograms. The first example in Figure 6.8 illustrates the importance of

considering both least-squares solutions (with and without the positivity constraint); the
event duration, the total seismic moment, and Mo(t) are different with each inversion

method. The least-squares solution produces a better fit to the data and is the preferred

solution. Moment-rate functions for the eight Chiba events are shown in Figure 6.9. The
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Figure 6.7. Map showing the Chiba borehole array and locations of earthquakes recorded by it.
Accelerations were recorded on 12-bit data loggers (the least significant bit is 1 cm/s?), which
obscures detection of the first P-wave arrival; stacking five array elements (inset) increases the
signal-to-noise ratio.
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Figure 6.8. Example deconvolution of two earthquakes recorded by the Chiba array. Top and

bottom earthquakes have the same format (see caption for Figure 6.3).

In each case, the

moment-rate function is shown at bottom center. The moment acceleration is shown on the right.
The slope of this function is proportional to stress drop under certain assumptions (equation
6.8). The time at which the slope exceeds 50 bars is marked with an arrow.
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Figure 6.9. Moment-rate functions for all Chiba events (see Table 6.2). Because the Chiba
seismograms were recorded on 12-bit data loggers (the least significant bit is 1 cm/s2), it is
possible that the first-arriving P-wave is not evident on the seismogram. Taken together, the

nucleation measurements from this group of earthquakes have shorter durations than those from
other events of comparable magnitude.
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total seismic moments are in good agreement with independent estimates based on local

magnitude and teleseismic waveforms.

6.4.3 Earthquakes Recorded on the Global Seismic Network

There are seven earthquakes listed in Table 6.2 that occurred adjacent to three
broadband stations of the GSN. These seismograms are recorded on 24- and 32-bit
systems, but are only sampled at 20 sps. The earthquakes range from My, 5.8 to 7.6. The
locations were established from teleseismic arrival times and centroid moment tensors were
determined by Harvard University from waveform inversion. Four of the earthquakes
occurred at depths greater than 85 km. One attribute of these data is that 5 to 10 minutes of
pre-event recording exists; however, no foreshocks were observed.

Two example deconvolutions are shown in Figure 6.10. In both cases, the
duration of rupture is approximately 4 s and the My, is 6.0. As was the case with the
Chiba events, there is only one near-source recording of each earthquake and hence,
effects from unmodeled rupture directivity add uncertainty to the measurements of
nucleation and mainshock duration. The moment-rate functions for the seven earthquakes

are shown in Figure 6.11. The moments obtained from integrating M, () are in good

agreement with independent estimates.

6.5 Moment-Jerk Functions

Moment-jerk functions for the 24 Northridge, Chiba, and GSN earthquakes (listed
in Table 6.2) are shown in Figure 6.12. These functions are interpreted assuming that the
rupture velocity is a constant 2.8 km/s; that is, variations in MO (¢) are proportional to
variations in dynamic stress drop (equation 6.8). In Figure 6.12, the ordinate is
logarithmic and ranges from 10 to 2000 bars. The derivation of equation 6.8 is predicated
on the assumption that the rupture is a circular crack expanding uniformly at constant
rupture velocity. The irregular behavior of moment acceleration in the examples shown
earlier attests to the erratic nature of rupture growth during earthquakes. The slip
distribution for large earthquakes (e.g., Landers) is known to be highly variable, with
regions of large slip (asperities) separated by areas where the slip amplitude is much

smaller (these asperities can often be correlated with peaks in the moment-rate function).
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Figure 6.11. Moment-rate functions for seven events recorded by the Global Seismic Network
(see Table 6.2).
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Figure 6.12. Apparent dynamic stress drop versus time for the events listed in Table 6.2. The
ordinate is a logarithmic scale and ranges from 10 to 2000 bars. Some events (e.g., #12 and 13)
exceed 100 bars from the first sample point; others (e.g., #23 and 24) have peaks that can be
visually correlated with quadratic growth in the moment-rate function.
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Equation 6.8 is most appropriate for the breakage of isolated asperities that exhibit
linear growth in moment acceleration, rather than the entire earthquake rupture. The
appropriateness of equation 6.8 breaks down when the rupture front acceleration changes
rapidly; for example, when the rupture front reaches an asperity edge and propagates
through low-strength regions. The seismic radiation from high-slip areas is much larger
and its coda can essentially eclipse the signal from neighboring areas of low slip.
Consequently, the stress drop is calculated for the initial portion of rupture until the first

peak in M,(t) (representing rupture of the first large asperity). The moment-jerk

functions are mostly positive but contain some negative values. What does negative
MO (r) imply? One explanation is that loading from the prior slip causes the stress to
increase locally, which is then not fully released during rupture — a net stress increase on a
small area of the fault [Rice and Gu, 1983]. A simpler explanation is that the moment rate
stops accelerating.

To measure the duration of the seismic nucleation phase, we evaluate when the
moment jerk exceeds a certain level of dynamic stress drop. For instance, the dynamic
stress drop exceeds 10 bars when the slope of the moment acceleration exceeds 2.8x1017
N-m/s3. Because there is no theoretical basis to prescribe the threshold level of MO (1), we
establish this level empirically by testing different thresholds, while noting that "average"
stress drops are on the order of 50 bars [Kanamori and Anderson, 1975; Abercrombie and
Leary, 1993]. The objective is to find a stress drop level (or range) that distinguishes
weak moment acceleration from that which occurs during normal earthquake rupture.
Since Ellsworth and Beroza [1995] had a similar purpose (i.e., discriminating the seismic
nucleation phase from the rest of the earthquake), it is natural that we compare our
nucleation durations based on stress drop with their picks for the same events.

Moment-rate functions for the 25 largest earthquakes of Ellsworth and Beroza
[1995] are shown in Figure 6.13. These events range in magnitude from 3.5 to 8.1 and
include many well-studied earthquakes of the last two decades. For the largest events,
only the first part of the M () was calculated; for smaller events, the M (¢) was
determined for the entire earthquake. The corresponding moment-jerk functions are
shown in Figure 6.14. Although the maximum stress drop varies considerably among the
events, in most cases the stress drop is low initially and grows during the beginning of
rupture. The maximum stress drop does not vary systematically with earthquake

magnitude, but larger earthquakes take longer to reach their maximum stress drop
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(measured from the first-arriving seismic signal). More importantly, the time it takes
earthquakes to reach the same level of apparent stress drop increases with earthquake size.

The maximum dynamic stress drop is listed in Table 6.3 for the Ellsworth and
Beroza [1995] events. Because this list contains many well-studied earthquakes, it is
interesting to compare the maximum stress drops obtained in this study with average stress
drops determined by others. As expected, the maximum dynamic stress drop is larger than
the average static stress drop; the most striking example is the 1994 My, 6.7 Northridge
mainshock (#5). For this event, Wald and Heaton [1994b] determined an average static
stress drop of 70 bars using equation 6.2. This calculation was made for the entire rupture
(7 s duration) assuming the radius was 8.7 km and the average slip was 121 cm. The
moment-jerk function for the first 1 s indicates a maximum stress drop of 700 bars
occurring at approximately 0.8 s.

Wald and Heaton [1994b] also solved for a distributed slip model using strong
motion seismograms. The maximum displacement in their model is 350 cm and occurs in
the first 1.5 s of rupture. To calculate the stress drop of this high-slip patch, we use
equation 6.2 and assume a radius of 2 km with an average slip of 250 cm — for this patch,
the static stress drop is about 600 bars. Neither the static nor the dynamic measurements
are precise, but it is encouraging that the measurements are close for the initial part of the
Northridge rupture.

A similar calculation for the 1992 My, 7.2 Landers earthquake (#2) is less certain
because the slip distribution is more poorly resolved; however, the maximum apparent
stress drop during the first 4 s of rupture (300 bars, Table 6.3) is consistent with estimates
of the static stress drop in the same period determined with the slip models presented in

Chapter 3.

6.5.1 Comparison with Measurements of Ellsworth and Beroza [1995]
The nucleation duration is most similar to the results of Ellsworth and Beroza
[1995] when the threshold value of M (¢) is set at 1.4x10'8 N-m/s> — or a 50 bar stress
drop at a rupture velocity of 2.8 km/s — this stress drop is a typical average value for
crustal earthquakes [Kanamori and Anderson, 1975; Abercrombie and Leary, 1993]. This
relationship is illustrated in Figure 6.15 where the durations obtained with 50 bars are
compared to the Ellsworth and Beroza [1995] measurements. Also shown in Figure 6.15

is the range of the duration measurement obtained with stress drops between 20 and 80
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Table 6.3. Parameters for Earthquakes in Ellsworth and Beroza [1995]

id date event M,y Mo Th Vg V20 Vso Va0 VB T, .
Nm &m| © & @)
1 19-Sep-1985 Michoacan 8.1 1.4e+21 25 50 040 1.15 3.05 50.0 580
2  28-Jun-1992 Landers 7.3 9.0e+19 21 3.0 050 1.75 3.05 20.0 280
3 25-Apr-1989 Mexico-viga 6.9 2.4e+19 27 0.53 050 1.25 2.05 230
4 18-Oct-1989 LomaPrieta 6.9 2.8e+19 25 1.6 035 065 0.70 9.00 350
5 17-Jan-1994 Northridge 6.7 1.0e+19 19 05 025 030 0.35 6.00 690
6 15-Oct-1979 Imperial Val 6.5 6.0e+18 19 059 0.12 0.47 048 15.0 400
7  9-Jun-1980 Victoria 6.4 4.8e+18 13 044 0.01 0.24 0.39 500
8 24-Oct-1993 Mexico-smr 6.4 5.8e+18 46 036 0.24 036 040 260
9 28-Jun-1992 Big Bear 6.2 2.0e+18 29 046 0.24 0.37 0.72 870
10 23-Apr-1992 Joshua Tree 6.1 1.4e+18 44 0.12 0.05 0.08 0.12 4.00 240
11 31-May-1990 Mexico-lla 5.9 7.5e+17 24 | 0.082 0.01 0.01 o0.03 1.70 470
12 29-Jun-1992 Little Skull 5.8 4.8e+17 27 046 040 0.45 057 1.70 420
13 28-Jun-1991 S. Madre 5.5 2.8e+17 23 0.3¢ 0.11 0.33 0.35 0.80 250
14 20-Mar-1994 North 10 5.3 8.9e+16 22 | 0.127 0.05 0.09 0.11 0.87 420
15 3-Dec-1988 Raymond 4.9 2.4e+16 16 0.11 0.01 0.11 0.12 0.80 370
16 16-Jan-1993 Gilroy 4.9 2.4e+16 29 0.21 0.16 0.21 0.24 0.80 130
17 14-Nov-1993 Parkfield 4.8 2.0e+16 15 0.20 0.17 0.30 40
18 11-Aug-1993 Halls Val. 4.7 1.3e+16 10 0.73 0.70 0.80 0.45 70
19 3-Feb-1994 North 03* 4.2 2.0e+15 26 | 0.047 0.03 0.04 0.05 0.26 660
20 6-Feb-1994 North 05* 41 1.4e+15 24 | 0.026 0.01 0.03 0.04 0.30 570
21 2-Feb-1994 North 02 3.8 5.0e+14 17 | 0.039 0.04 0.06 0.08 0.27 190
23  6-Feb-1994 North 06 3.7 3.5e+14 23 1 0.030 0.01 0.03 0.04 0.32 730
25 1-Feb-1994 North 01 3.6 2.5e+14 11 | 0.013 0.03 0.03 0.04 0.24 210
27 4-Feb-1994 North 04 3.5 1.8e+14 16 | 0.008 0.01 0.01 0.01 0.21 520
28 8-Mar-1994 North 09 34 1.3e+14 22 | 0.047 0.06 0.08 0.09 0.15 80

r, hypocentral distance

Vgg duration of seismic nucleation phase from Ellsworth and Beroza [1995]

Vs, duration of seismic nucleation phase determined with a 50 bar threshold

Yep total earthquake duration minus Vgg from Ellsworth and Beroza [1995]

T

max

* events #19 and 20 are the same as events #9b and 10, respectively, in Table 6.2

maximum dynamic stress drop during earthquake beginning
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Figure 6.13. Moment-rate functions from Ellsworth and Beroza [1995] for events listed in Table
6.3. The events are plotted in order of decreasing magnitude from top to bottom, and left to
right. The moment rate is determined only for the initial portion of the largest earthquakes. Note
that the time scale varies by a factor of 20 from the largest to the smallest events.
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Apparent Dynamic Stress Drop (Table 6.3 events)
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Figure 6.14. Apparent dynamic stress drop versus time for the earthquakes in Table 6.3. The
ordinate is a logarithmic scale and ranges from 10 to 2000 bars for all events. Some events
(e.g., #2 and 4) demonstrate weak beginnings the timing of which is corroborated by
independent studies. Note that here the time scale varies by over 600 for the events shown.
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bars. Two events (#16 and 17) never exceed 20 bars, indicating relatively low stress drop
throughout the earthquake, and others (#1, 14, 27) exceed this level at the first sample
point. The values of the nucleation duration determined with different thresholds are listed
in Table 6.3 together with the nucleation duration measured by Ellsworth and Beroza
[1995]. BE-EB [1995] observed that the duration of the seismic nucleation phase
increased with the eventual size of the earthquake. We also find this to be true using the
50 bar stress drop to distinguish the nucleation phase (Figure 6.16). The nucleation

duration increases with the mainshock moment raised to the power 0.2.

6.6 Discussion

Equation 6.8 is derived under the assumption that rupture velocity and stress drop
are time-invariant and that the dislocation is an idealized circular crack; yet, the M, (¢) is
interpreted in the context of a time-varying dynamic stress drop. This interpretation is
appropriate only for times during rupture when the assumptions hold, i.e., for periods
when the rupture can be approximated locally as having constant rupture velocity and
stress drop. More realistic models that allow for heterogeneous rupture growth and
variable stress drop would yield different expressions for M_(¢) than that given in
equation 6.9; however, the conclusions of the study would not change. We are using the
amplitude of M (¢) to discriminate the nucleation phase from the rest of the earthquake,
and the only assumption required to calculate M, (¢) is the theoretical Green's function.

The threshold is expressed as an apparent stress drop in this study, but it is
equivalent to use Mo(z‘). The apparent scaling between the duration of the seismic

nucleation phase defined in this manner and the seismic moment is unambiguous; whether
low M, (t) implies low stress drop, low rupture velocity, or rupture complexity that is not
included in the model, remains an open question.

EB-BE [1995] proposed two contrasting models to explain the observed scaling
between nucleation duration and mainshock size. The first interpretation, termed the
cascade model, is that there is no difference between the beginning of large and small
earthquakes. A large earthquake results when a small earthquake triggers a cascade of
increasingly larger slip events. In this model, rupture continues to grow if it can cause
successively larger fault elements to fail, and the size of the following mainshock is
influenced by the dynamic properties of the last element that fails. In this interpretation,

foreshocks occurring during the nucleation process represent the rupture of small,
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Figure 6.15. Comparison of nucleation duration measurements. The symbols show the duration
of the seismic nucleation phase determined using a 50 bar threshold plotted against the
durations measured by Ellsworth and Beroza [1995] for the same events; the range of each
measurement is shown for 20 and 80 bar stress drop thresholds. Least-squares fits are shown
by dashed and solid lines. The agreement is acceptable over a wide range of earthquake
magnitude indicating that the time required to reach the threshold is longer for bigger
earthquakes.



Chapter 6 — Seismic measurements of earthquake nicleation 158

Nucleation Scaling
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Figure 6.16. Nucleation duration versus seismic moment for 47 earthquakes examined in this
study. Since the Chiba data is recorded on a 12-bit recording system, the pick of the initial P-
wave is more uncertain than with the other seismograms. A least-squares fit to the
measurements (excluding those from the Chiba seismograms) is shown by the solid line. A
duration of 0.01 is the smallest measurement that can be obtained with this method and implies
that no seismic nucleation phase is observed. The duration of the seismic nucleation phase
scales with the seismic moment raised to the power 0.2,
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relatively strong patches that break dynamically [Das and Scholz, 1981]. In this model,
the stress drops of events in the cascade comprising the seismic nucleation phase should
not be unusually low.

The second interpretation, termed the preslip model, is that the beginnings of small
and large earthquakes are different. In the preslip model, failure initiates aseismically,
with an episode of slow, stable sliding over a limited region that gradually accelerates until
the slipping patch reaches a critical size. The process then becomes unstable, and fracture
propagates away from the nucleation zone at normal rupture velocity in an earthquake. In
this case, the seismic nucleation phase represents the final stages of this process during
which rupture is confined to the nucleation zone. In the preslip model, the scaling between
nucleation zone properties and mainshock moment could result from the magnitude of the
slip amplitude at breakaway. When this amplitude is large, the resulting dynamic rupture
is difficult to stop and a large earthquake results. By analogy with laboratory experiments,
the scaling of slip within and the dimension of the nucleation zone may be controlled by
the critical displacement for the fault surface.

Ohnaka [1993] proposed a model in which earthquake nucleation was separated
into two periods: quasi-static nucleation followed by quasi-dynamic nucleation. We have
shown evidence that the Mo(t) is small in an absolute sense in the beginning of
earthquakes, which could represent a quasi-dynamic period preceding normal dynamic
rupture. The most clear example of this observation is seen for the two Northridge
aftershocks shown in Figure 6.4. Both of these earthquakes were preceded by long
duration events with low M_(¢) that were only detectable with 16-bit recording systems
located near the source. It is possible that many earthquakes have such premonitory slip
that is not detected by current seismic instrumentation at greater distances. Our results
identify a measurable difference in the MO (t) during nucleation compared to the
mainshock, which is most consistent with the preslip model. Further, the duration of the
weak initial phase increases with the size of the following earthquake. Near-source, high-
dynamic-range (16-bit or better) recording systems with high sample rates (20 sps or
better) are necessary to observe a weak seismic nucleation phase, and thus the number of
events included in this study is small. The 47 events analyzed are not intended to represent
all earthquake phenomena, they do, however, suggest that most earthquakes begin slowly
and that the process responsible for this slow beginning exerts an influence on the eventual

earthquake size.
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Conclusions

Moment-rate and moment-jerk functions are presented for 47 earthquakes. It is
observed that the moment jerk is small, in an absolute sense, during the beginning of
earthquake rupture. The amplitude of the moment jerk is used to distinguish objectively
the weak nucleation phase from the rest of the earthquake. Measurements of the seismic
nucleation phase obtained for 25 earthquakes examined in Ellsworth and Beroza [1995] are
used to define an empirically-based threshold of 1.4x10!8 N-m/s3, which can be
expressed as a 50 bar apparent dynamic stress drop at a rupture velocity of 2.8 km/s under
certain assumptions. Values of moment jerk below the threshold can be interpreted either
in terms of low stress drop or low rupture velocity. The nucleation durations measured in
this way confirm the scaling relationship described by Ellsworth and Beroza [1995]: the
duration of the seismic nucleation phase increases with the subsequent mainshock
magnitude. In this study, the nucleation duration increases with the mainshock moment
raised to the power 0.2. This weak and erratic seismic phase reflects the first seismogenic
features of the fault's transition from a locked to a dynamic state. The near-source
seismograms shown here provide empirical evidence for a period of nucleation that
precedes dynamic earthquake rupture and might represent the final stage of an aseismic

nucleation process.
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